Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Renal blood flow during ureteral obstruction measured with133Xe wash out,86Rb uptake techniques and with an electromagnetic flowmeter

Summary

In moderate mannitol diuresis in the dog the ratio RBF-86Rb uptake/RBF-electromagnetic flowmeter decreased during ureteral obstruction from 0.923–0.705. In the same animals the ratio RBF-133Xe wash-out/RBF-electromagnetic flowmeter increased from 0.932–1.365. With the rubidium technique a significant redistribution of intrarenal blood flow was observed. No similar flow changes were seen with the133Xe wash-out technique. The two methods do not measure during ureteral obstruction the true RBF. The change of86Rb uptake by the individual segments of renal tissue is not an unequivocal proof for the intrarenal redistribution of bloof flow, but this possibility cannot be definitely excluded.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Andersen, A. M., Ladefoged, J.: Partition coefficient of133Xenon between various tissues and blood in vivo. Scand. J. clin. Lab. Invest.19, 72–78 (1967)

  2. 2.

    Andersen, A. M., Ladefoged, J.: The relationship between hematocrit and solubility of Xenon-133 in blood. J. pharm. Sci.54, 1684–1685 (1965)

  3. 3.

    Carlson, E. L., Sparks, H. V.: Intrarenal distribution of blood flow during elevation of ureteral pressure in dogs. Circulat. Res.26, 601–610 (1970)

  4. 4.

    Franklin, D. N., Selkurt, E. e.: Effects of elevated ureteral pressure on renal blood flow. Circulat. Res., Suppl. I, 143–147 (1964)

  5. 5.

    Gilmore, J. P.: Influence of tissue pressure on renal blood flow autoregulation. Amer. J. Physiol.206, 707–713 (1964)

  6. 6.

    Gosk, A., Jozua, W., Paradowski, A., Kurbril, A.: Blood flow in the kidney during stop flow diuresis. Acta physiol. pol.17, 145–151 (1966)

  7. 7.

    Hársing, L., Bartha, J., Harza, T., Pelley, K.: Sodium and potassium concentration and blood flow in the renal cortex and medulla during different diuretic responses. Acta physiol. Acad. Sci. hung.30, 215–224 (1966)

  8. 8.

    Hársing, L., Posch, E., Rosivall, L., Szabó, G.: Renal blood flow measured with Xe133 wash out, Rb86-uptake techniques and with an electromagnetic flowmeter. Acta med. Acad. Sci. hung. (in press, 1976)

  9. 9.

    Hársing, L., Szántó, G., Bartha, J.: Renal circulation during stop flow in the dogs. Amer. J. Physiol.213, 935–958 (1967)

  10. 10.

    Kety, S. S.: The theory and applications of the exchange of inert gas at the lungs and tissue. Pharmacol. Rev.3, 1–40 (1951)

  11. 11.

    Ladefoged, J., Pedersen, F.: Renal blood in isolated kidneys measured with an electromagnetic flowmeter and by Xenon-133, Krypton-85 wash-out technques. Pflügers Arch. ges. Physiol.299, 30–37 (1968)

  12. 12.

    Miyazaki, M., McNay, J.: Redistribution of renal cortical blood flow during ureteral occlusion and renal venous constriction. Proc. Soc. exp. Biol. (N. Y.)138, 454–461 (1971)

  13. 13.

    Morrison, T. J., Johnston, N. B.: Solubilities of the inert gases in water. J. chem. Soc.1954, 3441–3446

  14. 14.

    Sapirstein, L. A.: Fractionation of the cardiac output of rats with isotopic potassium. Circulat. Res.4, 689–692 (1956)

  15. 15.

    Sapirstein, L. A.: Regional blood flow by fractional distribution of indicators. Amer. J. Physiol.193, 161–168 (1958)

  16. 16.

    Selkurt, E.: Effect of ureteral blockade on renal blood flow and urinary concentrating ability. Amer. J. Physiol.205, 286–292 (1963)

  17. 17.

    Thorburn, G. D., Kopald, H. H., Herd, J. A., Hollenberg, M., O'Morchoe, C. C. C., Barger, A. C.: Intrarenal distribution of nutrient blood flow determined with Krypton-85 in the unanesthetized dog. Circulat. Res.13, 290–307 (1963)

  18. 18.

    Thurau, K., Henne, G.: Die transmurale Druckdifferenz der Widerstandsgefäße als Parameter der Widerstandsregulation in der Niere. Pflügers Arch. ges. Physiol.279, 156–177 (1964)

  19. 19.

    Truninger, B., Rosen, S. M., Oken, D. E.: Renale Hämodynamik und hämorrhagische Hypotension. Klin. Wschr.44, 857–862 (1966)

  20. 20.

    Yeh, S. Y., Peterson, R. E.: Solubility of carbon dioxide, krypton and xenon in lipids. J. pharm. Sci.52, 453–458 (1963)

  21. 21.

    Yeh, S. Y., Peterson, R. E.: Solubility of krypton in blood, protein solution and tissue homogenates. J. appl. Physiol.20, 1041–1047 (1965)

Download references

Author information

Correspondence to G. Szabó.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Szabó, G., Posch, E., Rosivall, L. et al. Renal blood flow during ureteral obstruction measured with133Xe wash out,86Rb uptake techniques and with an electromagnetic flowmeter. Pflugers Arch. 367, 33–36 (1976). https://doi.org/10.1007/BF00583653

Download citation

Key words

  • Kidney
  • Blood supply
  • Radioisotopes for the measurement of renal blood flow
  • Ureteral obstruction