Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Force velocity relationships in vascular smooth muscle

The influence of temperature

  • 85 Accesses

  • 29 Citations

Summary

Force velocity relationships of isolated vascular smooth muscle preparations were examined in the tetanized rat portal-anterior mesenteric vein by means of afterloaded isotonic contractions. Lowering of the temperature from 37°C to 25°C caused an average decrease of the following parameters: maximal velocity of shortening at zero load from 0.51 to 0.28 muscle length/sec; maximal rate of tension increase (dT/dt) from 847 to 362 dyn/sec; mechanical tension developed at the maximum ofdT/dt from 43 to 34% of the peak force generation; constantb of Hill's equation from 0.18 to 0.09 muscle length/sec. The latency was prolonged from 0.33 to 0.56 sec, and the time-to-maximum ofdT/dt from 0.9 to 1.6 sec. Between 27°C and 37°C the followingQ 10 values were calculated: for the maximal velocity of shortening at zero load 1.56; for the maximal rate of tension increase 1.88; for the latency 1.63. No distinct influence of temperature could be observed on the extent of isotonic shortening at zero load (0.69 muscle length at 37°C), on the extent of peak force generation (1107 dyn at 37°C), and on constanta of Hill's equation (0.35 at 37°C). It is concluded that parameters of contraction velocity in vascular smooth muscle depend on temperature, whereas the extent of contraction is independent of temperature. These findings are discussed in connection with the theory of the sliding-filament mechanism.

This is a preview of subscription content, log in to check access.

References

  1. Bárány, M.: ATPase activity of myosin correlated with speed of muscle shortening. J. gen. Physiol.50, 197–216 (1967)

  2. Bilek, I., Laven, R., Peiper, U., Regnat, K.: The effect of verapamil on the response to noradrenaline or to potassium-depolarization in isolated vascular strips. Microvasc. Res.7, 181–189 (1974)

  3. Brutsaert, D. L., Sonnenblick, E. H.: Force-velocity-length-time relations of the contractile elements in heart muscle of the cat. Circulat. Res.24, 137–149 (1969)

  4. Bohr, D. F., Filo, R. S., Guthe, K. F.: Contractile protein in vascular smooth muscle. Physiol. Rev.42, Suppl. 5, 98–107 (1962)

  5. Close, R.: The relation between intrinsic speed of shortening and duration of the active state of muscle. J. Physiol. (Lond.)180, 542–559 (1965)

  6. Close, R.: Dynamic properties of mammalian skeletal muscle. Physiol. Rev.52, 129–197 (1972)

  7. Close, R., Hoh, J. F. Y.: Influence of temperature on isometric contractions of rat skeletal muscles. Nature (Lond.)217, 1179–1180 (1968)

  8. Csapo, A., Goodall, M.: Excitability, length-tension relation and kinetics of uterine muscle contraction in relation to hormonal status. J. Physiol. (Lond.)126, 384–395 (1954)

  9. Devine, C. E., Somlyo, A. V., Somlyo, A. P.: Sarcoplasmatic reticulum and excitation-contraction coupling in mammalian smooth muscles. J. Cell Biol.52, 690–718 (1972)

  10. Edman, K. A. P., Mattiazzi, A., Nilsson, E.: The influence of temperature on the force-velocity relationship in rabbit papillary muscle. Acta physiol. scand.90, 750–756 (1974)

  11. Golenhofen, K., Hermstein, N., Lammel, E.: Membrane potential and contraction of vascular smooth muscle (portal vein) during application of noradrenaline and high potassium, and selective inhibitory effects of iproveratril (verapamil). Microvasc. Res.5, 73–80 (1973)

  12. Gordon, A. R., Siegman, M. J.: Mechanical properties of smooth muscle. I. Lengthtension and force-velocity relations. Amer. J. Physiol.221, 1243–1249 (1971)

  13. Hellstrand, P., Johansson, B.: The force-velocity relation in venous smooth muscle. Acta physiol. scand.91, 45A (1974)

  14. Hellstrand, P., Johansson, B., Ringberg, A.: Influence of extracellular calcium on isometric force and velocity of shortening in depolarized venous smooth muscle. Acta physiol. scand.84, 528–537 (1972)

  15. Herlihy, J. T., Murphy, R. A.: Force-velocity and series elastic characteristics of smooth muscle from the hog carotid artery. Circulat. Res.34, 461–466 (1974)

  16. Hill, A. V.: The heat of shortening and the dynamic constants of muscle. Proc. roy. Soc. B136, 136–195 (1938)

  17. Hill, A. V.: The influence of temperature on the tension developed in an isometric twitch. Proc. roy. Soc. B138, 349–354 (1951)

  18. Holman, M. E., Kasby, C. B., Suthers, M. B., Wilson, J. A. F.: Some properties of the smooth muscle of rabbit portal vein. J. Physiol. (Lond.)196, 111–132 (1968)

  19. Huxley, H. E.: The mechanism of muscular contraction. Science164, 1356–1366 (1969)

  20. Huxley, H. E., Hanson, J.: Changes in the cross striations of muscle during contraction and stretch and their structural interpretation. Nature (Lond.)173, 973–976 (1954)

  21. Johansson, B.: Active state in the smooth muscle of the rat portal vein in relation to electrical activity and isometric force. Circulat. Res.32, 246–258 (1973)

  22. Kababgi, M., Westphal, W., Bauereisen, E.: Die Temperaturabhängigkeit der Längen-Spannungs-Beziehung des Warmblütermyokards. Ein Beitrag zum Wirkungsmechanismus der Dehnung: Recruitment oder Inotropie. Basic Res. Cardiol.69, 47–57 (1974)

  23. Kaufmann, R., Fleckenstein, A.: Die Bedeutung der Aktionspotentialdauer und der Ca++-Ionen beim Zustandekommen der positiv-inotropen Kältewirkungen am Warmblüter-Myokard. Pflügers Arch. ges. Physiol.285, 1–18 (1965)

  24. v. Loh, D.: The effect of adrenergic drugs on spontaneously active vascular smooth muscle studied by long-term intracellular recording of membrane-potential. Angiologica (Basel)8, 144–155 (1971)

  25. Mashima, H.: Force-velocity and dynamic constants of the guinea-pig taenia coli. J. Physiol. Soc. Jap.31, 565–566 (1969)

  26. Meiss, R. A.: Some mechanical properties of cat intestinal muscle. Amer. J. Physiol.220, 2000–2007 (1971)

  27. Peiper, U., Griebel, L., Wende, W.: Activation of vascular smooth muscle of rat aorta by noradrenaline and depolarization: two different mechanisms. Pflügers Arch.330, 74–89 (1971)

  28. Peiper, U., Schmidt, E., Laven, R., Griebel, L.: Length-tension relationships in resting and activated vascular smooth muscle fibres. Pflügers Arch.340, 113–122 (1973)

  29. Rüegg, J. C.: Smooth muscle tone. Physiol. Rev.51, 201–248 (1971)

  30. Sonnenblick, E. H.: Implications of muscle mechanics in the heart. Fed. Proc.21, 975–990 (1962)

  31. Stephens, N. L., Kroeger, E., Mehta, J. A.: Force-velocity characteristics of respiratory airways smooth muscle. J. appl. Physiol.26, 685–692 (1969)

  32. Trautwein, W., Dudel, J.: Aktionspotential und Mechanogramm des Katzenpapillarmuskels als Funktion der Temperatur. Pflügers Arch. ges. Physiol.260, 104–115 (1954)

  33. Yeatman, L. A., Parmley, W. W., Sonnenblick, E. H.: Effects of temperature on series elasticity and contractile element motion in heart muscle. Amer. J. Physiol.217, 1030–1034 (1969)

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Peiper, U., Laven, R. & Ehl, M. Force velocity relationships in vascular smooth muscle. Pflugers Arch. 356, 33–45 (1975). https://doi.org/10.1007/BF00583519

Download citation

Key words

  • Vascular Smooth Muscle
  • Rat Portal Vein
  • Force Velocity Relation
  • Velocity of Shortening
  • Sliding Filament Mechanism