Pflügers Archiv

, Volume 381, Issue 3, pp 217–222 | Cite as

Pathways of phosphate transport in chick jejunum

Influence of vitamin D and extracellular sodium
  • Renate Fuchs
  • Meinrad Peterlik
Transport Processes, Metabolism and Endocrinology; Kidney, Gastrointestinal Tract, and Exocrine Glands


The effect of vitamin D3 on intestinal phosphate (Pi) absorption was studied in everted sacs prepared from jejunum of either vitamin D-deficient (−D) or vitamin D-replete (+D) chicks. Vitamin D3 stimulates the maximal velocity (Vmax) of a mucosal active Pi transport mechanism from 125 to 314 nmol·min−1·g−1 tissue.Km of this process remains virtually unchanged (−D: 0.15 mmol·l−1; + D: 0.18 mmol·l−1).

Active Pi entry into the epithelium depends on extracellular Na+. Reduction of buffer Na+ reducesVmax in the + D group to 182 nmol·min−1·g−1 tissue but has no significant effect in the −D animals (Vmax=105 nmol·min−1·g−1 tissue). In this group, the predominant effect of Na+ substitution is a shift ofKm to 1.13 mmol·l−1, whileKm in the +D group is changed only to 0.53 mmol·l−1.

Transeptithelial Pi transport in the + D group involves the mucosal phosphate pump and hence an intracellular pathway, proceeding at a rate of 48 nmol·min−1·g−1 tissue. This is in contrast to −D Pi transfer (8 nmol·l−1·g−1 tissue) which is by a diffusional, Na+-insensitive, and presumably paracellular pathway.

Transepithelial calcium transport (−D: 3.3 nmol·min−1·g−1; + D: 7.6 nmol·min−1·g−1 tissue) does not require the presence of extracellular Na+ and apparently involves pathways different from those of the Pi absorptive system.

Key words

Phosphate transport Intestine Vitamin D3 Sodium Calcium transport 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berner, W., Kinne, R., Murer, H.: Phosphate transport into brush-border membrane vesicles isolated from rat small intestine. Biochem. J.160, 467–474 (1976)Google Scholar
  2. 2.
    Borle, A. B.: Calcium and phosphate metabolism. Ann. Rev. Physiol.36, 361–390 (1974)Google Scholar
  3. 3.
    Chen, T. C., Castillo, L., Korycka-Dahl, M., DeLuca, H. F.: Role of vitamin D metabolites in phosphate transport of rat intestine. J. Nutr.104, 1056–1060 (1974)Google Scholar
  4. 4.
    Corradino, R. A., Wasserman, R. H.: Strontium inhibition of vitamin D3-induced calcium-binding-protein (CaBP) and calcium absorption in chick intestine. Proc. Soc. Exp. Biol. Med.133, 960–963 (1970)Google Scholar
  5. 5.
    Fiske, C. H., SubbaRow, Y.: The colorimetric determination of phosphorus. J. Biol. Chem.66, 375–400 (1925)Google Scholar
  6. 6.
    Goodman, D. B. P., Haussler, M. R., Rasmussen, H.: Vitamin D3 induced alteration of microvillar membrane lipid composition. Biochem. Biophys. Res. Commun.46, 80–86 (1972)Google Scholar
  7. 7.
    Harrison, H. E., Harrison, H. C.: Intestinal transport of phosphate: action of vitamin D, calcium and potassium. Am. J. Physiol.201, 1007–1012 (1960)Google Scholar
  8. 8.
    Kowarski, S., Schachter, D.: Effects of vitamin D on phosphate transport and incorporation into mucosal constituents of rat intestinal mucosa. J. Biol. Chem.244, 211–217 (1969)Google Scholar
  9. 9.
    Max, E. E., Goodman, D. B. P., Rasmussen, H.: Purification and characterization of chick intestine brush border membrane. Effects of 1 (OH)vitamin D3 treatment. Biochim. Biophys. Acta511, 224–239 (1978)Google Scholar
  10. 10.
    Morgan, D. B.: Calcium and phosphorus transport across the intestine. In: Malabsorption. (R. H. Girdwood and A. N. Smith, eds.). Baltimore: Williams and Wilkins 1969Google Scholar
  11. 11.
    Peterlik, M.: Vitamin D-dependent phosphate transport by chick intestine: inhibition by low Na+ and N-ethylmaleimide. In: Homeostasis of phosphate and other minerals. (S. G. Massry, E. Ritz and A. Rapado, eds.), pp. 149–159. New York, London: Plenum Press 1978Google Scholar
  12. 12.
    Peterlik, M.: Phosphate transport by embryonic chick duodenum: stimulation by vitamin D3. Biochim. Biophys. Acta514, 164–171 (1978)Google Scholar
  13. 13.
    Peterlik, M., Wasserman, R. H.: Effect of vitamin D3 and 1,25-dihydroxyvitamin D3 on intestinal transport of phosphate. In: Phosphate metabolism (S. G. Massry and E. Ritz, eds.), pp. 323–332. New York, London: Plenum Press 1977Google Scholar
  14. 14.
    Peterlik, M., Wasserman, R. H.: Effect of vitamin D on transepithelial phosphate transport in chick intestine. Am. J. Physiol.234, E 379–388 (1978)Google Scholar
  15. 15.
    Plattner, H., Klima, J., Mehnert, A., Berger, H.: Quantitative and qualitative changes of structure and ultrastructure of intestinal epithelia during incubation in vitro. Virchows Arch. B.6, 337–349 (1970)Google Scholar
  16. 16.
    Taylor, A. N.: In vitro phosphate transport in chick ileum: effect of cholecalciferol, calcium, sodium and metabolic inhibitors. J. Nutr.104, 489–494 (1974)Google Scholar
  17. 17.
    Walling, M. W.: Intestinal Ca and phosphate transport: differential responses to vitamin D metabolites. Am. J. Physiol.233, E 488–494 (1977)Google Scholar
  18. 18.
    Walling, M. W., Hartenbower, D. L., Coburn, J. W., Norman, A. W.: Effects of 1α, 25-, 24R-, 25-, and 1α, 24R, 25-hydroxylated metabolites of vitamin D3 on calcium and phosphate absorption by duodenum from intact and nephrectomized rats. Arch. Biochem. Biophys.182, 251–257 (1977)Google Scholar
  19. 19.
    Wasserman, R. H., Taylor, A. N.: Intestinal absorption of phosphate in the chick: effect of vitamin D3 and other parameters. J. Nutr.103, 586–599 (1973)Google Scholar
  20. 20.
    Wilson, T. H., Wiseman, G.: The use of sacs of everted small intestine for the study of the transference of substances from the mucosal to the serosal surface. J. Physiol. (Lond.)123, 116–125 (1954)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Renate Fuchs
    • 1
  • Meinrad Peterlik
    • 1
  1. 1.Institut für allgemeine und experimentelle PathologieUniversität WienWienAustria

Personalised recommendations