, Volume 101, Issue 7, pp 420–424 | Cite as

Genomic in situ hybridization reveals the allopolyploid nature ofMilium montianum (Gramineae)

  • Simon T. Bennett
  • Ann Y. Kenton
  • Michael D. Bennett
Original Articles


Molecular techniques that “paint” chromosomes offer exciting new opportunities for testing genome relationships.Milium montianum (2n=22) is a grass whose distinctive bimodal karyotype comprises 8 large (L-) and 14 smaller (S-) chromosomes. The proposal thatM. montianum is an allotetraploid, with diploidMilium vernale (2n=8) as the L-chromosome genome donor, has been impossible to confirm by classical means. To test this hypothesis, biotinylated total genomic DNA of diploidM. vernale (2n=8) was hybridized in situ to root tip chromosomes ofM. montianum. TheM. vernale probe hybridized preferentially to all L-chromosomes, but not to the S-chromosomes. These results (i) confirm the allopolyploid nature ofM. montianum, (ii) strongly support the theory that the L-chromosomes ofM. montianum were donated byM. vernale, or a closely related genotype and (iii) show that subsequently the L-chromosomes have largely retained their genomic integrity in the new allopolyploid backgroud. Clearly, genomic in situ hybridization (GISH) is a potentially powerful tool for studying genome evolution and biosystematics. It will often be useful for investigating the origins of wild and cultivated polyploid plant species, especially where conventional methods have failed, for studying introgression, and for understanding the mechanism(s) of origin of bimodal karyotypes.


Plant Species Conventional Method Developmental Biology Molecular Technique Genome Evolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anamthawat-Jónsson K, Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1990) Discrimination between closely related Triticeae species using genomic DNA as a probe. Theor Appl Genet 79: 721–728Google Scholar
  2. Bennett MD, Heslop-Harrison JS, Smith JB, Ward JP (1983) DNA density in mitotic and meiotic metaphase chromosomes in plants and animals. J Cell Sci 63: 173–179Google Scholar
  3. Bennett ST, Thomas SM (1991) Karyological analysis and genome size inMilium (Gramineae) with special reference to polyploidy and chromosomal evolution. Genome 34: 868–878Google Scholar
  4. Brandham PE (1983) Evolution in a stable chromosome system. In: Brandham PE, Bennett MD (eds) Kew chromosome conference II. Allen and Unwin, London, pp 251–260Google Scholar
  5. Brandriff BF, Gordon LA, Segraves R, Pinkel D (1991) The male-derived genome after sperm-egg fusion: Spatial distribution of chromosomal DNA and paternal-maternal genomic association. Chromosoma 100: 262–266Google Scholar
  6. Christidis L (1983) Extensive chromosomal repatterning in two congeneric species:Pytilla melba L. andPytilla phoenicoptera Swainson (Estrildidae: Aves). Cytogenet Cell Genet 36: 641–648Google Scholar
  7. Christidis L (1990) Chromosomal repatterning and systematics in the passeriformes (Songbirds). In: Fredga K, Kihlman BA, Bennett MD (eds) Chromosomes totay, vol 10. Unwin Hyman, London Boston Sydney Wellington, pp 279–294Google Scholar
  8. Coulton G (1990) Non-radioisotopic labels for in situ hybridisation histochemistry: a histochemist's view. In: Harris N, Wilkinson DG (eds) In situ hybridisation: Application to developmental biology and medicine. Cambridge University Press, Cambridge, pp 1–32Google Scholar
  9. Crowhurst RN, Gardner RC (1991) A genome-specific repeat sequence from kiwifruit (Actinidia deliciosa var.deliciosa). Theor Appl Genet 81: 71–78Google Scholar
  10. Darlington CD (1963) Chromosome botany and the origins of cultivated plants. Allen and Unwin, LondonGoogle Scholar
  11. Evans GM (1988) Genetic control of chromosome pairing in polyploids. In: Brandham PE (ed) Kew chromosome conference III. HMSO, London, pp 253–260Google Scholar
  12. Flavell RB (1986) Repetitive DNA and chromosome evolution in plants. Philos Trans R Soc Lond [Biol] 312: 227–242Google Scholar
  13. Greilhuber J, Deumling B, Speta F (1981) Evolutionary aspects of chromosome banding, heterochromatin, satellite DNA, and genome size inScilla (Liliaceae). Ber Dtsch Bot Ges Bd 94: 249–266Google Scholar
  14. Heslop-Harrison JS, Leitch AR, Schwarzacher T, Anamthawat-Jónsson K (1990) Detection and characterization of 1B/1R translocations in hexaploid wheat. Heredity 65: 385–392Google Scholar
  15. Hosaka K, Kianian SF, McGrath JM, Quiros CF (1990) Development and chromosomal localization of genome-specific DNA markers ofBrassica and the evolution of amphidiploids and n=9 diploid species. Genome 33: 131–142Google Scholar
  16. Itoh K, Iwabuchi M, Shimamoto K (1991) In situ hybridization with species-specific DNA probes gives evidence for asymmetric nature ofBrassica hybrids obtained by X-ray fusion. Theor Appl Genet 81: 356–362Google Scholar
  17. Kenton A, Rudall PJ (1987) An unusual case of complex heterozygosity inGelasine azurea (Iridaceae), and its implications for reproductive biology. Evol Trends Plants 1: 95–103Google Scholar
  18. Kenton A, Dickie JB, Langton DH, Bennett MD (1990) Nuclear DNA amount and karyotype symmetry inCypella andHesperoxiphion (Tigrideae; Iridaceae). Evol Trends Plants 4: 59–69Google Scholar
  19. Le HT, Armstrong KC, Miki B (1989) Detection of rye DNA in wheat-rye hybrids and wheat translocation stocks using total genomic DNA as a probe. Plant Mol Biol Rep 7: 150–158Google Scholar
  20. Leitch AR, Mosgöller W, Schwarzacher T, Bennett MD, Heslop-Harrison JS (1990) Genomic in situ hybridization to sectioned nuclei shown chromosome domains in grass hybrids. J Cell Sci 95: 335–341Google Scholar
  21. Levitzky GA (1931) The karyotype in systematics. Bull Appl Bot Genet Plant Breed 27: 220–240Google Scholar
  22. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  23. Manuelidis L (1985) Individual interphase chromosome domains revealed by in sity hybridization. Hum Genet 71: 288–293Google Scholar
  24. Matthey R (1975) Caryotypes de mammifères et d'oiseaux. La question des microchromosomes et quelques reflexions sur l'evolution chromosomique. Arch Genet 48: 12–26Google Scholar
  25. Rayburn AL, Gill BS (1986) Molecular identification of the D-genome chromosomes of wheat. J Hered 77: 253–255Google Scholar
  26. Rayburn AL, Gill BS (1987) Use of repeated DNA sequences as cytological markers. Am J Bot 74: 574–580Google Scholar
  27. Saul MW, Potrykus I (1984) Species-specific repetitive DNA used to identify interspecific somatic hybrids. Plant Cell Rep 3: 65–67Google Scholar
  28. Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989) In situ localization of parental genomes in a wide hybrid. Ann Bot 64: 315–324Google Scholar
  29. Schweizer D (1976) Reverse fluorescent chromosome banding with chromomycin and DAPI. Chromosoma 58: 307–324Google Scholar
  30. Schweizer D, Strehl S, Hagemann S (1990) Plant repetitive DNA elements and chromosome structure. In: Fredga K, Kihlman BA, Bennett MD (eds) Chromosomes today, vol 10. Unwin Hyman, London Boston Sydney Wellington, pp 33–43Google Scholar
  31. Stebbins GL (1971) Chromosomal evolution in higher plants. Edward Arnold, LondonGoogle Scholar
  32. Vosa CG (1983) Chromosome evolution inOrnithogalum. In: Brandham PE, Bennett MD (eds) Kew chromosome conference II. Allen and Unwin, London, p 370Google Scholar
  33. Vosa CG, Bennett ST (1990) Chromosome studies in the Southern African flora: 58–94. Chromosome evolution in the genusGasteria Duval. Caryologia 43: 235–247Google Scholar
  34. Xu J, Procunier JD, Kasha KJ (1990) Species-specific in sity hybridization ofHordeum bulbosum chromosomes. Genome 33: 628–634Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Simon T. Bennett
    • 1
  • Ann Y. Kenton
    • 1
  • Michael D. Bennett
    • 1
  1. 1.Jodrell LaboratoryRoyal Botanic GardensKew, RichmondUK

Personalised recommendations