Order

, Volume 1, Issue 4, pp 415–417

A use for frequently rediscovering a concept

  • Bernard Monjardet
Communications

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. P. Avann (1961a) Application of the join-irreducible excess function to semimodular lattices,Math. Ann. 142, 345–354.Google Scholar
  2. S. P. Avann (1961b). Distributive properties in semimodular lattices,Math. Z. 76, 283–287.Google Scholar
  3. S. P. Avann (1964) Increases in the join-excess function in a lattice,Math. Ann. 154, 420–426.Google Scholar
  4. S. P. Avann (1968) Locally atomic upper locally distributive lattices,Math. Ann. 175, 320–336.Google Scholar
  5. S. P. Avann (1972) The lattice of natural partial orders,Aequationes Math. 8, 95–102.Google Scholar
  6. J. P. Barthelemy, Cl. Flament, and B. Monjardet (1982) Ordered sets and social sciences, inOrdered Sets (ed. I. Rival), D. Reidel, Dordrecht, pp. 721–758.Google Scholar
  7. M. K. Bennett (1968) A lattice characterization of convexity,J. Comb. Theory 5, 198–202.Google Scholar
  8. M. K. Bennett (1971) Generalized convexity lattices,J. Comb. Theory 10, 140–144.Google Scholar
  9. M. K. Bennett (1980) Convexity closure operators,Alg. Univ. 10, 345–354.Google Scholar
  10. G. Boulaye (1967) Sous-arbres et homomorphismes à classes connexes dans un arbre inTheory of Graphs International Symposium, Gordon and Breach, New York, pp. 47–50.Google Scholar
  11. G. Boulaye (1968a) Sur l'ensemble ordonné des parties connexes d'un graphe connexe,R.I.R.O., 13–25.Google Scholar
  12. G. Boulaye (1968b) Notion d'extension dans les treillis et méthodes boléennes,Rev. Roum. Maths. Pures Appl. 13–9, 1225–1231.Google Scholar
  13. P. Crawley and R. P. Dilworth (1973) Algebraic theory of lattices, Prentice Hall, Inc., Englewood Cliffs.Google Scholar
  14. R. A. Dean and G. Keller (1968) Natural partial orders,Canad. J. Math. 20, 535–554.Google Scholar
  15. R. P. Dilworth (1940) Lattices with unique irreducible decompositions,Ann. Math. 41, 771–777.Google Scholar
  16. R. P. Dilworth (1941) Ideals in Birkhoff lattices,Trans. Amer. Math. Soc. 49, 325–353.Google Scholar
  17. R. P. Dilworth (1961) Structure and decomposition of lattices, inLattice Theory, Amer. Math. Soc. Providence, pp. 3–16.Google Scholar
  18. R. P. Dilworth and P. Crawley (1960) Decomposition theory for lattices without chain conditions,Trans. Amer. Math. Soc. 96, 1–22.Google Scholar
  19. P. H. Edelman (1980) Meet-distributive lattices and the antiexchange closure,Alg. Univ. 10, 290–299.Google Scholar
  20. P. H. Edelman (1982) The lattice of convex sets of an oriented matroid,J. Comb. Theory B33, 239–244.Google Scholar
  21. P. H. Edelman and P. Klingsberg (1982) The subposet lattice and the order polynomialEur. J. Comb. 2, 341–346.Google Scholar
  22. C. Greene and G. Markowsky (1974) A combinatorial test for local distributivity, Research Report RC 5129, IBM T. J. Watson Research Center, Yorktown Heights, New York.Google Scholar
  23. R. E. Jamison (1970) A development of axiomatic convexity, Tech. Report 48, Clemson University Math., pp. 15–20.Google Scholar
  24. R. E. Jamison (1980) Copoints in antimatroïds,Congr. Num. 29, 535–544.Google Scholar
  25. R. E. Jamison (1982) A perspective on abstract convexity: classifying alignments by varieties, inConvexity and Related Combinatorial Geometry, (eds. D. G. Kay and M. Breen), Marcel Dekker, New York, pp. 113–150.Google Scholar
  26. G. Markowsky (1980) The representation of posets and lattices by sets,Alg. Univ. 11, 173–192.Google Scholar
  27. J. L. Pfaltz (1969) Semi-homomorphisms of semimodular lattices,Proc. Amer. Math. Soc. 22, 418–425.Google Scholar
  28. J. L. Pfaltz (1971) Convexity in directed graphs,J. Comb. Theory 10, 143–162.Google Scholar
  29. J. S. Pym and H. Perfect (1970) Submodular functions and independence structures,J. Math. Anal. Appl. 30, 1–31.Google Scholar
  30. N. Polat (1976) Treillis de séparation des graphes,Canad. J. Math. 28, 725–752.Google Scholar
  31. I. Rival (ed.) (1982)Ordered Sets, D. Reidel, Dordrecht.Google Scholar
  32. R. P. Stanley (1974) Combinatorial reciprocity theorems,Adv. Math. 14, 194–253.Google Scholar

Copyright information

© D. Reidel Publishing Company 1985

Authors and Affiliations

  • Bernard Monjardet
    • 1
  1. 1.Université Paris 5 and Centre d'Analyse et de Mathematiques SocialesParis Cedex 06France

Personalised recommendations