Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

The effect of eccentricity on dynamic crack propagation behaviour of rubber-modified PMMA models

  • 50 Accesses

  • 5 Citations

Abstract

Rubber-modified materials show a complex fracture behaviour. In a previous paper the influence of a rigid PMMA circular inclusion with a rubber ring surrounding it embedded in a PMMA matrix, on the dynamic fracture mode was investigated. In the present experimental study, the same model system was used to investigate the effect of eccentricity of the initial crack path from the specimen centreline on which the complex inclusion centre is located, on the dynamic crack propagation mode. This effect was studied by using high-speed photography and dynamic caustics. It was shown that the eccentricity of the initial crack path largely determines both the crack propagation delay observed as the crack approaches the complex inclusion and the bifurcation of the crack. It was also found that the maximum crack propagation velocity, the length of the crack path along the interface, as well as the angle of incidence with which the propagating crack meets the interface, increase as the eccentricity increases.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    C. B. Bucknall, “Toughened Plastics” (Applied Science, London, 1977).

  2. 2.

    S. Newman, in “Polymer Blends”, Vol. 2, edited by D. R. Paul and S. Newman (Academic, New York, 1978) Ch. 13.

  3. 3.

    R. P. Burford andM. Pittolo,J. Mater. Sci. 21 (1986) 2308.

  4. 4.

    M. Pittolo andR. P. Buford,ibid. 21 (1986) 1769.

  5. 5.

    Idem, Rubber Chem. Technol. 58 (1985) 97.

  6. 6.

    G. Ries, M. Schlienger andS. Martin,J. Macromol. Sci. (Phys.) B17 (1980) 355.

  7. 7.

    A. Echter,Angew. Macromol. Chem. 58/59 (1977) 175.

  8. 8.

    C. B. Bucknall, F. F. P. Cote andI. K. Partridge,J. Mater. Sci. 21 (1986) 301.

  9. 9.

    C. B. Bucknall, P. Davies andI. K. Partridge,ibid. 21 (1986) 307.

  10. 10.

    R. P. Kambour,J. Polym. Sci. A2 (1964) 4159.

  11. 11.

    O. K. Spurr andW. D. Niegish,J. Appl. Poly. Sci. 6 (1962) 585.

  12. 12.

    D. G. Grand, R. P. Kambour andW. F. Haaf,J. Polym. Sci. A-2 10 (1972) 1565.

  13. 13.

    E. H. Merz, G. C. Claver andM. Bairr,ibid. 22 (1956) 325.

  14. 14.

    J. A. Schmitt andH. Keskkula,J. Appl. Polym. Sci. 3 (1960) 132.

  15. 15.

    S. Newman andS. Strella,ibid. 9 (1965) 2297.

  16. 16.

    K. Dinges andH. Schuster,Makromol. Chem. 101 (1967) 200.

  17. 17.

    R. P. Kambour.J. Polym. Sci. Macromol. Rev. 7 (1973) 112.

  18. 18.

    C. F. Parsons andE. L. Suk,Chem. Ser. 99 (1971).

  19. 19.

    R. D. Sudduth,J. Appl. Polym. Sci. 99 (1978) 2427.

  20. 20.

    G. C. Papanicolaou, S. A. Paipetis andP. S. Theocaris,Colloid Polym. Sci. 256 (1978) 689.

  21. 21.

    G. C. Papanicolaou andP. S. Theocaris,ibid. 257 (1979) 239.

  22. 22.

    P. S. Theocaris andG. C. Papanicolaou,Fibre Sci. Technol. 12 (1979) 421.

  23. 23.

    G. C. Papanicolaou, P. S. Theocaris andG. D. Spathis,Colloid. Polym. Sci. 258 (1980) 1231.

  24. 24.

    P. S. Theocaris, G. C. Papanicolaou andG. D. Spathis,Fibre. Sci. Technol. 15 (1981) 187.

  25. 25.

    P. S. Theocaris, E. P. Sideridis andG. C. Papanicolaou,J. Reinforced Plastics and Composites 4 (1985) 396.

  26. 26.

    E. P. Sideridis, P. S. Theocaris andG. C. Papanicolaou,Rheologica Acta 25 (1986) 350.

  27. 27.

    C. D. Papaspyrides, G. C. Papanicolaou andT. Duvis,Mater. Chem. Phys. 17 (1987) 531.

  28. 28.

    G. C. Papanicolaou andC. D. Papaspyridis,ibid. 17 (1987) 453.

  29. 29.

    J. Milios, G. C. Papanicolaou andR. J. Young,J. Mater. Sci. 21 (1986) 4281.

  30. 30.

    G. A. Papadopoulos andG. C. Papanicolaou,ibid. 23 (1988) 3421.

  31. 31.

    P. S. Theocaris andG. A. Papadopoulos,Engng Fract. Mech. 13 (1980) 683.

  32. 32.

    Idem, ASTM STP 971 (American Society for Testing and Materials, Philadelphia, Pennsylvania, 1983) II-320.

  33. 33.

    P. S. Theocaris,J. Appl. Mech. 37 ASME Vol. 92, Series E (1970) 409.

  34. 34.

    Idem, “Development in Stress Analysis”, Vol. 1, edited by G. Holister (Applied Science Publishers, London, 1978) Ch. 2, p. 27.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Papadopoulos, G.A., Papanicolaou, G.C. The effect of eccentricity on dynamic crack propagation behaviour of rubber-modified PMMA models. J Mater Sci 25, 4066–4074 (1990). https://doi.org/10.1007/BF00582483

Download citation

Keywords

  • PMMA
  • Complex Inclusion
  • Fracture Mode
  • Circular Inclusion
  • Maximum Crack