Advertisement

Planta

, Volume 150, Issue 2, pp 114–119 | Cite as

Unusual fatty acids in the lipids from organs and cell cultures ofPetroselinum crispum

  • Friedhelm Ellenbracht
  • Wolfgang Barz
  • Helmut K. Mangold
Article

Abstract

The lipids of seeds, leaves, and roots of parsley,Petroselinum crispum, and of heterotrophic as well as photomixotrophic cell cultures of this plant were characterized with the aim of finding a system for studying the biosynthesis of unusual fatty acids. It was found that (Z)-6-octadecenoic acid, petroselinic acid, which is the typical constituent fatty acid of triacylglycerols in seeds, occurs only in small proportions, if at all, in leaves, roots, and cell cultures of parsley. In all lipid classes studied petroselinic acid is accompanied by its (Z)-9- and (Z)-11-isomers, oleic and vaccenic acid, respectively. The phosphatidylcholines, phosphatidylethanolamines, and triacylglycerols of both heterotrophic and photomixotrophic callus cultures contain no petroselinic acid but rather oleic and vaccenic acids in equal ratios. Thus, cell cultures of parsley appear to be suitable for studying the biosynthesis of vaccenic acid. The constituent octadecadienoic acids in the lipids of various tissues and cell cultures of parsley consist almost exclusively of the (Z),(Z)-9,12-isomer, linoleic acid, which is derived from oleic acid. (Z),(Z)-6,9- and (Z),(Z)-11,14-Octadecadienoic acids, which could be expected as products of desaturation of petroselinic and vaccenic acids, were not found in any of the lipids of organs and cell cultures investigated.

Key words

Fatty acid desaturation Oleic acid Petroselinic acid Petroselinum Vaccenic acid 

Abbreviations

TLC

thin-layer chromatography

GLC

gas-liquid chromatography

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beroza, M., Bierl, B.A. (1967) Rapid determination of olefin position in organic compounds in microgram range by ozonolysis and gas chromatography-alkylidene analysis. Anal. Chem.39, 1131–1135Google Scholar
  2. Chalvardjian, A. (1964) Fatty acids of brown and yellow fat in rats. Biochem. J.90, 518–521Google Scholar
  3. Chisholm, M.J., Hopkins, C.Y. (1965) Fatty acids ofDoxantha seed oil. J. Am. Oil Chem. Soc.42, 49–50Google Scholar
  4. Christie, W.W., Noble, R.C., Moore, H.J. (1970) Determination of lipid classes by gas-chromatography procedure. Analyst95, 940–944Google Scholar
  5. Dittmer, J.C., Lester, R.L. (1964) A simple, specific spray for the detection of phospholipids on thin-layer chromatograms. J. Lipid Res.5, 126–127Google Scholar
  6. Folch, J., Lees, M., Sloane Stanley, G.H. (1957) A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem.226, 497–509Google Scholar
  7. Gamborg, O.L., Miller, R.A., Ojima, K. (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res.50, 151–158Google Scholar
  8. Gamborg, O.L., Shyluck, J.P. (1970) The culture of plant cells with ammonium salts as the sole nitrogen source. Plant Physiol.45, 598–600Google Scholar
  9. Grosbois, M., Mazliak, P. (1978) Ultrastructural sites involved in petroselinic acid 119-1 biosynthesis during ivy seed (Hedera helix L.) development. In: Recent advances in the biochemistry and physiology of plant lipids, pp. 409–414, Appelqvist, L.Å., Liljenberg, C., eds. Elsevier, Amsterdam New York OxfordGoogle Scholar
  10. Hitchcock, C., Nichols, B.W. (1971) Plant lipid biochemistry. Academic Press, LondonGoogle Scholar
  11. Hüsemann, W., Radwan, S.S., Mangold, H.K., Barz, W. (1980) The lipids in photoautotrophic and heterotrophic cell suspension cultures ofChenopodium rubrum. Planta,147, 379–383Google Scholar
  12. Kates, M. (1970) Plant phospholipids and glycolipids. In: Advances in lipid research, Vol. 8, pp. 225–265, Paoletti, R., Kritchevsky, D., eds. Academic Press, New York San Francisco LondonGoogle Scholar
  13. Kates, M., Eberhardt, F.M. (1957) Isolation and fractionation of leaf phosphatides. Can. J. Bot.35, 895–905Google Scholar
  14. Kates, M., Wilson, A.C., de la Roche, A.I. (1979) Lipid biosynthesis in plant cell cultures. In: Recent advances in the biochemistry and physiology of plant lipids, pp. 329–342, Appelqvist, L.Å., Liljenberg, C., eds. Elsevier, Amsterdam New York OxfordGoogle Scholar
  15. Khan, M.U., Williams, J. (1977) Improved thin-layer chromatographic method for the separation of major phospholipids and glycolipids from plant lipid extracts and phosphatidylglycerol and bis(monoacylglycerol)phosphate from animal lipid extracts. J. Chromatogr.140, 179–185Google Scholar
  16. Kleinig, H., Steinki, C., Kopp, C., Zaar, K. (1978) Oleosomes (spherosomes) fromDaucus carota suspension culture cells. Planta140, 233–237Google Scholar
  17. Krebs, K.G., Heusser, D., Wimmer, H. (1967) Sprühreagentien. In: Dünnschichtchromatographie, 2nd edn., pp. 813–859, Stahl, E., ed. Springer, Berlin Heidelberg New YorkGoogle Scholar
  18. Mangold, H.K., Malins, D.C. (1960) Fractionation of fats, oils, and waxes on thin layers of silicic acid. J. Am. Oil Chem. Soc.37, 383–385Google Scholar
  19. Mangold, H.K. 1977. The common and unusual lipids of plant cell cultures. In: Plant tissue culture and its bio-technological application, pp. 55–65, Barz, W., Reinhard, E., Zenk, M.H., eds. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  20. Morris, L.J. (1962) Separation of higher fatty acid isomers and vinylogues by thin-layer chromatography. Chem. Ind. (London): 1238–1240Google Scholar
  21. Nichols, B.W. (1964) Separation of plant phospholipids and glycolipids. In: New biochemical separations, pp. 221–237. James, A.T., Morris, L.J., eds. D. Van Nostrand Company Ltd., LondonGoogle Scholar
  22. Placek, L.L. (1963) A review on petroselinic acid and its derivatives. J. Am. Oil Chem. Soc.40, 319–329Google Scholar
  23. Pohl, P., Glasl, H., Wagner, H. (1970) Zur Analytik pflanzlicher Glyko-und Phospholipide und ihrer Fettsäuren. I. Eine neue dünnschichtchromatographische Methode zur Trennung pflanzlicher Lipide und quantitativen Bestimmung ihrer Fettsäurezusammensetzung. J. Chromatogr.49, 488–492Google Scholar
  24. Pugh, E.L., Kates, M. (1979) Membrane-bound phospholipid desaturases. Lipids14, 159–165Google Scholar
  25. Radwan, S.S. (1976) Localization of lipids containing (Z)-11-eicosenoic and (Z)-13-docosenoic acids inTropaeolum majus. Phytochemistry15, 1727–1729Google Scholar
  26. Radwan, S.S. (1978) Coupling of two-dimensional thin-layer chromatography for the quantitative analysis of lipid classes and their constituent fatty acids. J. Chromatogr. Sci.16, 538–542Google Scholar
  27. Radwan, S.S., Große-Oetringhaus, S., Mangold, H.K. (1978) Lipids in plant tissue cultures. VI. Effect of temperature on the lipids ofBrassica napus andTropaeolum majus cultures. Chem. Phys. Lipids22, 177–184Google Scholar
  28. Radwan, S.S., Mangold, H.K. (1976) The lipids of plant tissue cultures. In: Advances in lipid research, vol. 14, pp. 171–211, Paoletti, R., Kritchevsky, D., eds., Academic Press, New York San Francisco LondonGoogle Scholar
  29. Radwan, S.S., Mangold, H.K. (1980) Biochemistry of lipids in plant cell cultures. In: Advances in biochemical engineering, vol. 16, pp. 109–133, Fiechter, A., Ghose, T.K., Blakebrough, N., eds. Springer, Berlin Heidelberg New YorkGoogle Scholar
  30. Radwan, S.S., Mangold, H.K., Barz, W., Hüsemann, W. (1979a) Lipids in plant tissue cultures. VIII. Reversible changes in the composition of lipids and their constituent fatty acids in response to alternate shifts in the mode of carbon supply. Chem. Phys. Lipids25, 101–109Google Scholar
  31. Radwan, S.S., Mangold, H.K., Hüsemann, W., Barz, W. (1979b) Lipids in plant tissue cultures. VII. Heterotrophic and mixotrophic cell cultures ofChenopodium rubrum. Chem. Phys. Lipids24, 79–84Google Scholar
  32. Reinert, J., Bajaj, Y.P.S. (1977) Applied and fundamental aspects of plant cell, tissue, and organ culture. Springer, Berlin Heidelberg New YorkGoogle Scholar
  33. Siakotos, A.N., Rouser, G. (1965) Analytical separation of nonlipid water soluble substances and gangliosides from other lipids by dextran gel column chromatography. J. Am. Oil Chem. Soc.42, 913–919Google Scholar
  34. Siebertz, H.P., Heinz, E., Bergmann, L. (1978) Acyl lipids in photosynthetically active tissue cultures of tobacco. Plant Sci. Lett.12, 119–126Google Scholar
  35. Spener, F., Mangold, H.K. (1975) Straight-chain unsaturated fatty acids and cyclopentenyl fatty acids in leaf lipids ofCaloncoba echinata andHydnocarpus anthelminthica. Phytochemistry14, 1369–1373Google Scholar
  36. Spener, F., Staba, E.J., Mangold, H.K. (1974) Lipids in plant tissue cultures. II. Unusual fatty acids in lipids ofHydnocarpus anthelminthica cultures. Chem. Phys. Lipids12, 344–350Google Scholar
  37. Stein, R.A., Nicolaides, N. (1962) Structure determination of methyl esters of unsaturated fatty acids by gas-liquid chromatography of the aldehydes formed by triphenyl phosphine reduction of the ozonides. J. Lipid Res.3, 476–478Google Scholar
  38. Street, H.E. (1973) Plant tissue and cell culture. Blackwell Scientific Publications, Oxford London Edinburgh MelbourneGoogle Scholar
  39. Van Vleet, E.S., Quinn, J.G. (1978) Separation of monounsaturated fatty acid methyl ester isomers by highly polar gas-liquid chromatographic stationary phases. J. Chromatogr.151, 396–400Google Scholar
  40. Vongerichten, E., Köhler, A. (1909) Über Petroselinsäure, eine neue Ölsäure. Ber. Dtsch. Chem. Ges.42, 1638–1639Google Scholar
  41. Wagner, H., Hörhammer, L., Wolff, P. (1961) Dünnschichtchromatographie von Phosphatiden und Glykolipiden. Biochem. Z.334, 175–184Google Scholar
  42. Witting, L.A. (1975) Recent developments in lipid biosynthetic pathway. In: Modification of lipid metabolism, pp. 1–41, Perkins, E.G., Witting, L.A., eds. Academic Press, New York San Francisco LondonGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Friedhelm Ellenbracht
    • 1
    • 2
  • Wolfgang Barz
    • 2
  • Helmut K. Mangold
    • 1
  1. 1.Institut für Biochemie und Technologie-H.P. Kaufmann-Institut-der Bundesanstalt für FettforschungMünsterGermany
  2. 2.Institut für Biochemie der Pflanzen der Universität MünsterMünsterGermany

Personalised recommendations