Advertisement

Pflügers Archiv

, Volume 372, Issue 1, pp 37–42 | Cite as

Oxygen diffusivity in tumor tissue (DS-Carcinosarcoma) under temperature conditions within the range of 20–40°C

  • J. Grote
  • R. Süsskind
  • P. Vaupel
Heart, Circulation, Respiration and Blood; Environmental and Exercise Physiology

Summary

The O2 diffusion constants D and K of tumor tissue (DS-Carcinosarcoma in the rat kidney) were determined at temperatures of 20, 30, 37, and 40°C. The following mean values were obtained for the conditions of 37°C: D=1.75·10−5 cm2/s and K=1.9·10−5 mlO2/cm·min·atm. Within the range of 20–40°C, temperature variations in tumor tissue cause changes in the O2 diffusion coefficient D of 2.0–2.5%/°C and in the Krogh O2 diffusion constant K of 0.5–1.5%/°C. The measured O2 diffusion constants for tumor tissue correspond to values of normal tissue with similar water content. This indicates that the insufficient O2 supply in DS-Carcinosarcoma is due not to unfavorable O2 diffusivity of the tumor tissue but rather to a decreased convective O2 transport and to insufficient capillarization. An analysis of O2 diffusion in DS-Carcinosarcoma tissue using the determined O2 diffusion constants lead to the result that, under the conditions of arterial normoxia and normocapnia, critical O2 supply conditions are to be expected when the intercapillary distance exceeds approximately 120 μm.

Key words

Tumor tissue O2 diffusion O2 diffusion coefficient D Krogh's diffusion constant K Critical O2 supply 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aisenberg, A. C.: The glycolysis and respiration of tumors. New York-London: Academic Press (1961)Google Scholar
  2. 2.
    Bässler, K. H., Vaupel, P.: Personal communicationGoogle Scholar
  3. 3.
    Cater, D. B.: Oxygen tension in neoplastic tissues. Tumori50, 435–444 (1964)Google Scholar
  4. 4.
    Cater, D. B., Silver, I. A.: Quantitative measurements of oxygen in normal tissues and in the tumors of patients before and after radiotherapy. Acta Radiol. (Stockh.)53, 233–256 (1960)Google Scholar
  5. 5.
    Diem, K., Leutner, C.: Wissenschaftliche Tabellen Documenta Geigy, 7. Auf. Stuttgart: Thieme 1975Google Scholar
  6. 6.
    Ganfield, R. A., Nair, P., Whalten, W. J.: Mass transfer, storage, and utilization of O2 in cat cerebral cortex. Am. J. Physiol.219, 814–821 (1970)Google Scholar
  7. 7.
    Gertz, K. H., Loeschcke, H. H.: Bestimmung der Diffusions-Koeffizienten von H2, O2, N2 und He in Wasser und Blutserum bei konstant gehaltener Konvektion. Z. Naturforsch.9b, 1–9 (1954)Google Scholar
  8. 8.
    Goldstick, T. K., Ciuryla, V. T., Zuckerman, L.: Diffusion of oxygen in plasma and blood. In: Oxygen transport to tissue-II (J. Grote, D. Reneau and G. Thews, eds.), Adv. exp. Med. Biol., vol. 75, pp. 183–190. New York-London: Plenum Press 1976Google Scholar
  9. 9.
    Gonsalvez, M., Weinhouse, S.: Control mechanisms of oxygen and glucose utilization in tumors. In: Oxygen transport to tissue-II (J. Grote, D. Reneau and G. Thews, eds.), Adv. exp. Med. Biol., vol. 75, 587–596. New York-London: Plenum Press 1976Google Scholar
  10. 10.
    Greven, K.: Der O2-Diffusionskoeffizient von Leber, Nierenrinde und Hirnrinde unter verschiedenen Bedingungen. Pflügers Arch. ges. Physiol.271, 14–22 (1960)Google Scholar
  11. 11.
    Grote, J.: Die Sauerstoffdiffusionskonstanten im Lungengewebe und Wasser und ihre Temperaturabhängigkeit. Pflügers Arch. ges. Physiol.295, 245–254 (1967)Google Scholar
  12. 12.
    Grote, J.: Die Bestimmng der Sauerstoffbindungskurve in hochverdünnten Hämoglobinlösungen. Pflügers Arch. ges. Physiol.296, 202–211 (1967)Google Scholar
  13. 13.
    Grote, J., Thews, G.: Die Bedingungen für die Sauerstoffversorgung des Herzmuskelgewebes. Pflügers Arch. ges. Physiol.276, 142–165 (1962)Google Scholar
  14. 14.
    Grote, J., Süsskind, R., Vaupel, P.: The oxygen diffusion coefficients of tumor tissue (DS-Carcinosaroma) at 37°C and 40°C. Pflügers Arch.347, R41 (1974)Google Scholar
  15. 15.
    Gullino, P. M.: In vivo utilization of oxygen and glucose by neoplastic tissue. In: Oxygen transport to tissue-II (J. Grote, D. Reneau and G. Thews, eds.), Adv. exp. Med. Biol. vol. 75, pp. 521–536. New York-London: Plenum Press 1976Google Scholar
  16. 16.
    Gullino, P. M., Grantham, F. H.: Studies on the exchange of fluids between host and tumor. I. A method for growing “tissue-isolated” tumors in laboratory animals. J. Nat. Cancer Inst.27, 679–693 (1961)Google Scholar
  17. 17.
    Himmelblau, D. M.: Diffusion of dissolved gases in liquids. Chem. Rev.64, 527–550 (1964)Google Scholar
  18. 18.
    Kawashiro, T., Nüsse, W., Scheid, P.: Determination of diffusivity of oxygen and carbon dioxide in respiring tissue: Results in rat skeletal muscle. Pflügers Arch.359, 231–251 (1975)Google Scholar
  19. 19.
    Kirk, J. E., Laursen, T. J. S.: Diffusion coefficients of various solutes for human aortic tissue. With special reference to variation in tissue permeability with age. J. Gerontol.10, 288–302 (1955)Google Scholar
  20. 20.
    Kreuzer, F.: Über die Diffusion von Sauerstoff in Serumeiweißlösungen verschiedener Konzentration. Helv. Physiol. Pharmacol. Acta8, 505–516 (1950)Google Scholar
  21. 21.
    Krogh, A.: The rate of diffusion of gases through animal tissue with some remarks on the coefficient of invasion. J. Physiol. (Lond.)52, 391–408 (1918/1919)Google Scholar
  22. 22.
    Krogh, A.: The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. J. Physiol. (Lond.)52, 409–415 (1918/1919)Google Scholar
  23. 23.
    Pütter, J.: Der Glucosestoffwechsel bei bösartigen Tumoren In: D-Glucose und verwandte Verbindungen in Medizin und Biologie (H. Barthelheimer, W. Heyde und W. Thorn, eds.), pp. 988–1042. Stuttgart: F. Enke 1966Google Scholar
  24. 24.
    Reinhold, H. S.: Improved microcirculation in irradiated tumours. Eur. J. Cancer7, 273–280 (1971)Google Scholar
  25. 25.
    Reneau, D. D., Bruley, D. F., Knisely, M. H.: A computer simulation for prediction of oxygen limitations in cerebral gray matter. J. Ass Advan. Med. Instrum.4, 211–223 (1970)Google Scholar
  26. 26.
    Rieger, F.: Diffusionskoeffizienten und Kapillar-Versorgungsradien des O2- und des Glucosestoffwechsels beim DS-Karzinosarkom. Zur mathematischen in-vivo-Theorie der Begründung des Krebs-Mehrschritt-Therapie-Konzeptes 1973. Arch. Geschwulstforsch.43, 52–55 (1974)Google Scholar
  27. 27.
    Schwarz, W., Schulz, V., Kersten, M., Wörz, R.,, Vaupel, P.: Durchblutung und Sauerstoffverbrauch gewebsisolierter Impftumoren (DS-Carcinosarkom) in vivo. Z. Krebsforsch.75, 161–173 (1971)Google Scholar
  28. 28.
    Spector, W. S.: Handbook of biological data. Philadelphia-London: W. B. Saunders Comp. 1956Google Scholar
  29. 29.
    Stein, T. R., Martin, J. C., Keller, K. H.: Steady-state oxygen transport through red blood cell suspensions. J. Appl. Physiol.31, 397–402 (1971)Google Scholar
  30. 30.
    Swabb, E. A., Wei, J., Gullino, P. M.: Diffusion and convection in normal and neoplastic tissues. Cancer Res.34, 2814–2822 (1974)Google Scholar
  31. 31.
    Tannock, I. F.: The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour. Br. J. Cancer22, 258–273 (1968)Google Scholar
  32. 32.
    Tannock, I. F.: Oxygen diffusion and the distribution of cellular radiosensitivity in tumours. Br. J. Radiol.45, 515–524 (1972)Google Scholar
  33. 33.
    Tannock, I. F.: Oxygen distribution in tumors: Influence on cell proliferation and implications for tumour therapy. In: Oxygen transport to tissue-II (J. Grote, D. Reneau and G. Thews, eds.), Adv. exp. Med. Biol., vol. 75, pp. 597–603. New York-London: Plenum Press 1976Google Scholar
  34. 34.
    Thews, G.: Die Sauerstoffdiffusion im Gehirn. Ein Beitrag zur Frage der Sauerstoffversorgung der Organe. Pflügers Arch. ges. Physiol.271, 197–226 (1960)Google Scholar
  35. 35.
    Thews, G.: Ein Verfahren zur Bestimmung des O2-Diffusions-koeffizienten, der O2-Leitfähigkeit und des O2-Löslichkeitskoeffizienten im Gehirngewebe. Pflügers Arch. ges. Physiol.271, 227–244 (1960)Google Scholar
  36. 36.
    Thews, G., Vaupel, P.: O2 supply conditions in tumor tissue in vivo. In: Oxygen transport to tissue-II (J. Grote, D. Reneau and G. Thews, eds.), Adv. exp. Med. Biol. vol. 75, pp. 537–545. New York-London: Plenum Press 1976Google Scholar
  37. 37.
    Thomlinson, R. H., Gray, L. H.: The histological structure of some human lung cancers and the possible implications for radiotherapy. Br. J. Cancer9, 539–549 (1955)Google Scholar
  38. 38.
    Vaupel, P.: Atemgasswechsel und Glucosestoffwechsel von Implantationstumoren (DS-Carcinosarkom) in vivo. Experimentelle Untersuchungen und theoretische Analysen zur Frage der kritischen Sauerstoff- und Glucoseversorgung im Tumorgewebe. In: Funktionsanalyse biologischer Systeme (G. Thews, ed.), vol. 1. Wiesbaden: Steiner 1974Google Scholar
  39. 39.
    Vaupel, P.: Effect of percentual water content in tissue and liquids on the diffusion coefficient of O2, CO2, and H2. Pflügers Arch.361, 201–204 (1976)Google Scholar
  40. 40.
    Vaupel, P., Günther, H., Grote, J., Aumüller, G.: Atemgaswechsel und Glucosestoffwechsel von Tumoren (DS-Carcinosarkom) in vivo. I. Experimentelle Untersuchungen der versorgungsbestimmenden Parameter. Z. Ges. Exp. Med.156, 283–294 (1971)Google Scholar
  41. 41.
    Visschedijk, P. J. B. J., Schultz, J. S., Kreuzer, F.: Determination of the diffusion coefficient of oxygen in respiring rat diaphragm. Proc. 15th Dutch Federation Meeting, p. 367 (1974)Google Scholar
  42. 42.
    Yoshida, F., Ohshima, N.: Diffusivity of oxygen in blood serum. J. Appl. Physiol.21, 915–919 (1966)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • J. Grote
    • 1
  • R. Süsskind
    • 1
  • P. Vaupel
    • 1
  1. 1.Physiologisches InstitutAbteilung für Angewandte Physiologie der Universität MainzMainzFederal Republic of Germany

Personalised recommendations