Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Evidence for a cell surface adenosine receptor on coronary myocytes and atrial muscle cells

Studies with an adenosine derivative of high molecular weight


We have studied the site of action of adenosine with the aid of a large molecular weight adenosine derivative which is confined to the extracellular space. A stable protein-AMP-conjugate was formed using 1-ethyl-3-(3-dimethyl-aminopropyl)-carbodiimide to covalently couple AMP by P-N linkage to lysine residues of a carbonic anhydrase preparation. The conjugate was characterized by disc-SDS-electrophoresis and exhibited a mean molecular weight of about 30000. When infused into the coronary arteries of isolated guinea pig hearts the protein-AMP-conjugate induced vasodilation which was similar in magnitude and time course to that elicited by free AMP or adenosine. The dilatory response of the coronaries was caused by the protein-AMP-conjugate itself and not by free AMP or by adenosine liberated from the conjugate. This conclusion is based on the facts that: i) The electrophoretic mobility of the conjugate remained unchanged after its passage through the heart. ii) Addition of 5′-nucleotidase and adenosine deaminase to the protein-AMP-conjugate prior to its infusion into the coronaries did not alter the vasoactive effects. iii) Perfusion of the isolated hearts with equipotent concentrations of14C-AMP,14C-adenosine or protein-14C-AMP-conjugate resulted in a significant incorporation of radioactivity into cardiac adenine nucleotides only in the case of labeled AMP and adenosine. Besides its effects on the coronaries, the protein-AMP-conjugate also rapidly abolished the calcium-dependent action potential in the atrial muscle. Since the biological effects observed are most likely caused by the adenosine moiety of AMP our results provide evidence that AMP as well as adenosine act via a receptor site on the surface of coronary myocytes and atrial muscle cells.

This is a preview of subscription content, log in to check access.


  1. 1.

    Afonso, S.: Inhibition of coronary vasodilating action of dipyridamole and adenosine by aminophylline in dog. Circulat. Res.26, 743–752 (1970)

  2. 2.

    Berne, R. M.: Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Amer. J. Physiol.204, 317–322 (1963)

  3. 3.

    Bünger, R., Haddy, F. J., Querengässer, A., Gerlach, E.: An isolated guinea pig heart preparation with in vivo like features. Pflügers Arch.353, 317–326 (1975)

  4. 4.

    Bünger, R., Haddy, F. J., Gerlach, E.: Coronary responses to dilating substances and competitive inhibition by theophylline in the isolated perfused guinea pig heart. Pflügers Arch.358, 213–224 (1975)

  5. 5.

    Cobbin, L. B., Einstein, R., Maguire, M. H.: Studies on the coronary dilator actions of some adenosine analogs. Brit. J. Pharmacol.50, 25–33 (1974)

  6. 6.

    Gerlach, E., Deuticke, B., Dreisbach, R. H.: Der Nucleotid-Abbau im Herzmuskel bei Sauerstoffmangel und seine mögliche Bedeutung für die Coronardurchblutung. Naturwissenschaften50, 228–229 (1963)

  7. 7.

    Gerlach, E., Deuticke, B.: Eine einfache Methode zur Mikrobestimmung von Phosphat in der Papierchromatographie. Biochem. Z.337, 477–479 (1963)

  8. 8.

    Davidson, M. B., van Herle, A. J., Gerschenson, L. E.: Insulin and sepharose-insulin effects on tyrosine transaminase levels in cultured rat liver cells. Endocrinology92, 1442–1446 (1972)

  9. 9.

    Drury, A. N., Szent-Gyögyi, A.: The physiological activity of adenine compounds with special reference to their action upon mammalian heart. J. Physiol. (Lond.)68, 213–226 (1929)

  10. 10.

    Halloran, M. J., Parker, C. W.: The preparation of nucleotide-protein-conjugates: carbodiimides as coupling agents. J. Immunol.96, 373–378 (1966)

  11. 11.

    Jenissen, H. P., Heilmeyer, L. M. G., Jr.: Multiple forms of phosphorylase kinase in red and white skeletal muscle. FEBS Letters42, 77–80 (1974)

  12. 12.

    Jones, C. E., Parker, J. C., Smith, E. E.: Determination of myocardial acid-soluble adenine nucleotides on anion-exchange thin layers. J. Chromatogr.64, 378–382 (1972)

  13. 13.

    Karnovsky, M. J.: Morphology of capillaries with special reference to muscle capillaries. In: Capillary permeability. Alfred Benzon Symposium II (Ch. Crone and A. N. Lassen, eds.), pp. 341–350. New York: Academic Press 1970

  14. 14.

    Neville, D. M.: Molecular weight determination of protein-dodecyl sulfate complexes by gel electrophoresis in a discontinuous buffer system. J. biol. Chem.246, 6328–6334 (1971)

  15. 15.

    Nees, S.: Neue apparative Möglichkeiten für elektrophoretische Trennungen. GIT: Fachzeitschrift für das Laboratorium5, 383–394 (1975)

  16. 16.

    Olsson, R. A., Davis, C. J., Khouri, E. M., Patterson, R. E.: Evidence for an adenosine receptor on the surface of dog coronary myocytes. Circulat. Res.39, 93–98 (1976)

  17. 17.

    Olsson, R., Snow, I. A., Gentry, M. K., Frick, G. P.: Adenosine uptake by canine heart. Circulat. Res.31, 767–778 (1972)

  18. 18.

    Ornstein, L.: Disc electrophoresis. I. Background and theory. Ann. N. Y. Acad. Sci.121, 321–349 (1964)

  19. 19.

    Rickli, E. E., Ghazanfar, S. A. S., Gibbons, B. H., Edsall, I. T.: Carbonic anhydrase from human erythrocytes. J. biol. Chem.239, 1065–1078 (1964)

  20. 20.

    Scholtholt, J., Nitz, R. E., Schraven, E.: On the mechanism of the antagonistic action of xanthine derivatives against adenosine and coronary vasodilators. Arzneimittel.-Forsch. (Drug Res.)22, 1255–1259 (1972)

  21. 21.

    Schrader, J., Gerlach, E.: Compartmentation of cardiac adenine nucleotides and formation of adenosine. Pflügers Arch.369, 1–9 (1977)

  22. 22.

    Schrader, J., Rubio, R., Berne, R. M.: Inhibition of slow action potentials of guinea pig atrial muscle by adenosine: a possible effect on Ca2+-influx. J. Mol. Cell. Cardiol.7, 427–433 (1975)

  23. 23.

    Schwartz, J., Nutting, D. F., Goodman, H. M., Kostyo, J. L., Fellows, R. E.: Growth hormone covalently bound to sepharose. II. Study of the biological activity of a growth hormonesepharose complex in adipose tissue and diaphragm muscle. Endocrinology92, 439–445 (1973)

  24. 24.

    Simionescu, N., Simionescu, M., Palade, G. E.: Permeability of muscle capillaries to exogenous myoglobin. J. Cell Biol.57, 424–452 (1973)

  25. 25.

    Simionescu, N., Simionescu, M., Palade, G. E.: Permeability of muscle capillaries to small hemo-peptides. J. Cell Biol.64, 586–607 (1975)

  26. 26.

    Stein, H. H., Somani, P.: Cardiovascular effects of nucleoside analogs. Ann. N. Y. Acad. Sci.255, 380–387 (1975)

  27. 27.

    Themann, H., Keuker, G., Westphal, V.: Elektronenmikroskopische Untersuchungen zur Permeation exogener Peroxidase durch das Endothel der Herzmuskelkapillaren. Cytobiologie3, 13–24 (1971)

  28. 28.

    Venter, J. C., Dixon, J. E., Maroko, P. R., Kaplan, N. O.: Biologically active catecholamines covalently bound to glass beads. Proc. nat. Acad. Sci. (Wash.)69, 1141–1145 (1972)

  29. 29.

    Venter, J. C., Ross, J., Dixon, J. E., Mayer, S. E., Kaplan, N. O.: Immobilized catecholamine and cocaine effects on contractility of cardiac muscle. Proc. nat. Acad. Sci. (Wash.)70, 1214–1217 (1973)

  30. 30.

    Wiedmeier, V. T., Rubio, R., Berne, R. M.: Incorporation and turnover of adenosine-U-14C in perfused guinea pig myocardium. Amer. J. Physiol.223, 51–54 (1972)

  31. 31.

    Yong, M. S.: Stability of catecholamines and propranolol covalently bound to sepharose and glass beads. Science182, 157–158 (1973)

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schrader, J., Nees, S. & Gerlach, E. Evidence for a cell surface adenosine receptor on coronary myocytes and atrial muscle cells. Pflugers Arch. 369, 251–257 (1977). https://doi.org/10.1007/BF00582192

Download citation

Key words

  • Isolated heart
  • Vascular permeability
  • Myocardial blood flow
  • Adenosine
  • Adenosine receptor