Advertisement

The effect of temporary treatment of animal half embryos with lithium and the modification of this effect by simultaneous exposure to actinomycin D

  • Ernesto de Angelis
  • John Runnström
Article

Summary

Sixteen-cell stages of the sea urchin Paracentrotus lividus were separated into animal and vegetal halves. The former were reared in four different media: pure sea water, sea water with 10 μg/ml actinomycin D, sea water with 0.043 mol lithium, sea water containing the same concentration of lithium together with 10 μg/ml actinomycin D. The main result of the study was that the development had a more animal character after combined exposure to actinomycin D and lithium than after exposure to lithium alone. The inference from this result is that transcription processes are involved in the vegetalization of lithium treated sea urchin embryos.

The differentiation of the animal halves occurring in normal sea water is widely repressed in the presence of actinomycin D. Particularly obvious is the fact that the transformation of the acron with ensuing substitution of the long stereocilia by short motile cilia fails to occur in the presence of actinomycin D. The transformation of the acron and its stereocilia seem thus to be dependent on transcription processes.

In animal halves reared in normal medium droplets, dark in phase contrast, may appear near the tip of the stereocilia. This is followed very soon by the shedding of the stereocilia. In animal halves treated with actinomycin D, the droplets appear in a somewhat later stage than in the halves reared in normal sea water. After their appearance, the stereo cilia acquire a certain motility. The droplet formation may correspond to the elimination of a component which stiffens the stereocilia. The elimination of this component does not seem to be directly dependent of transcription processes. On the other hand, the stability of the stereocilia decreases with the distance from the animal pole.

The data obtained in this investigation may be integrated into the double gradient concept, also in its recent elaboration (Runnström, 1967).

The present investigation was carried out at Stazione Zoologica, Naples. We are deeply indebted to Professor M. Pantaleo, head of this institution, for his interest and generous support. We express also our gratitude to Professors R. Martin and R. Rocca for their help and friendly interest. One of us expresses his gratitude to Professor M. Pantaleo for the award of a research grant from the Stazione. He recognizes also his indebtedness to Professor M. De Vincentiis, director of the Department of Histology and Embryology at the University of Naples. The second of us expresses his thanks for financial support from the “Swedish Natural Sciences Research Council”, from the “Swedish Cancer Society” and from the “Research group of embryology for the study of cellular differentiation ” of the Department of Zoology, University of Rome. He expresses his sincere thanks to the Director of this Department, Professor P. Pasquini, for his stimulating interest.

Keywords

Actinomycin Natural Science Research Council Paracentrotus Lividus Swedish Natural Science Research Council Acron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

16-Zell-Stadien vonParacentrotus lividus wurden in animale und vegetative Hälften geteilt.

Die Animalhälften wurden in vier verschiedenen Media aufgezogen: reines Meerwasser, Meerwasser mit Actinomycin D (10 (μg/ml), Meerwasser mit 0,043 mol Lithium und Meerwasser mit beiden Zusätzen in den erwähnten Konzentrationen. Aus diesen Versuchen ergibt sieh, daß nach kombinierter Behandlung mit Actinomycin D und Lithium die Entwicklung stärker animalen Charakter zeigt als nach Behandlung mit Lithium allein. Daraus kann geschlossen werden, daß in der vegetalisierenden Wirkung von Lithium Transskriptionsprozesse einbezogen sind.

Die in reinem Meerwasser auftretende Differenzierung der Animalhälften wird durch Actinomycin weitgehend unterbunden. Dabei unterbleibt auch die Umformung des Akrons mit der darauffolgenden Ablösung der langen Stereocilien durch kurze, bewegliche Cilien. Das deutet darauf hin, daß die Transformation des Acrons und der Stereocilien von Transskriptionsprozessen abhängig ist.

Bei in Normalmedium aufgezogenen Animalhälften erscheinen nahe an der Spitze der Stereocilien kleine, im Phasenkontrast dunkle Tropfen. Kurz darauf werden die Stereocilien abgeworfen. Unter dem Einfluß von Actinomyein erscheinen diese Tropfen verzögert. Nach ihrer Bildung sind die Stereocilien beschränkt beweglich. Das Auftreten dieser Tropfen könnte also mit der Elimination einer Komponente, die die Stereocilien versteift, in Verbindung gebracht werden. Die Elimination dieser Komponente scheint nicht direkt von Transskriptionsprozessen abhängig zu sein. Andererseits nimmt die Stabilität der Stereocilien mit der Entfernung vom Animalpol ab.

Die vorliegenden Resultate passen in die erweiterte Fassung der Doppelgradienten-Theorie (Runnström, 1967).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Giudice, G., Mutolo, V., Donatuto, G.: Gene expression in sea urchin development. Wilhelm Roux' Archiv161, 118–128 (1968).Google Scholar
  2. Hörstadius, S.: Über die Determination in Verlauf der Eiachse bei Seeigeln. Pubbl. Staz. Zool. Napoli14, 251–429 (1935).Google Scholar
  3. —: Weitere Studien über die Determination im Verlaufe der Eiachse bei Seeigeln. Wilhelm Roux' Archiv Entwickl.-Mech. Org.135, 40–68 (1936a).Google Scholar
  4. —: Über die zeitliche Determination im Keim von Paracentrotus lividus. Wilhelm Roux' Arch. Entwickl.-Mech. Org.135, 1–39 (1936b).Google Scholar
  5. - in: McClung (ed.), Handbuch der mikroskopischen Technik, p. 43–50 (1937).Google Scholar
  6. —: Experimental researches on the developmental physiology of the se archin. Pubbl. Staz. Zool. Napoli21 (Suppl.) 131–172 (1949).Google Scholar
  7. —, Josefsson, L., Runnström, J.: Morphogenetic agents from unfertilized eggs of the sea urchin Paracentrotus lividus. Develop. Biol.16, 189–202 (1967).Google Scholar
  8. Lindahl, P. E.: Physiologische Probleme der Entwicklung und Formbildung des Seeigelkeimes. Naturwissenschaften29, 673–685 (1941).Google Scholar
  9. Markman, B., Runnström, J.: Animal and vegetal halves of sea urchin larvae subjected to temporary treatment with actinomycin C and mitomycin C. Exp. Cell Res.31, 615–618 (1963).Google Scholar
  10. Runnström, J.: Plasmabau und Determination bei dem Ei von Paracentrotus lividus. Wilhelm Roux' Arch. Entwickl.-Mech. Org.113, 556–581 (1928).Google Scholar
  11. —: Undersökningar över sjöborreäggets determination. Med. Fören. (Stockh.)3, 65–70 (1935).Google Scholar
  12. - Die Analyse der primären Differenzierungsvorgänge im Seeigelkeim. Verh. d. Dtsch. Ges. in Tübingen (1954).Google Scholar
  13. Runnström, J.: The role of nuclear metabolism in the determination of the sea urchin egg-Path. Biol.9, 781–785 (1961).Google Scholar
  14. —: Considerations on the control of differentiation in the early sea urchin development. Arch. Zool. Ital.51, 239–272 (1966).Google Scholar
  15. —: The mechanism of control of differentiation in early development of the sea urchin. A tentative discussion. Exp. Biol. Med.1, 52–62 (1967).Google Scholar
  16. —, Immers, J.: The animalizing action of trypsin on embryos of the sea urchin (Psammechinusmiliaris, Paracentrotus lividus). A study of interactions in early differentiation. Arch. Biol. (Liège)77, 365–410 (1966).Google Scholar
  17. —, Manelli, H.: The stereocilia of the sea urchin embryo, the conditions of their formation and disappearance. Accad. Naz. Lincei (Ser. 8)42, 1–8 (1967).Google Scholar
  18. —, Markman, B.: Gene dependency of vegetalization in sea urchin embryos treated with. lithium. Biol. Bull.130, 3, 402–414 (1966).Google Scholar
  19. Scarano, E., Petrocellis, B. de, Augusti-Tocco, G.: Studies on the control of enzyme synthesis during the early embryonic development of the sea urchins. Biochim. biophys. Acta. (Amst.)87, 174–176 (1964a).Google Scholar
  20. — — —: Deoxycytidylate aminohydrolase content in disaggregated cells from sea urchin embryos. Exp. Cell Res.36, 211–213 (1964b).Google Scholar
  21. Ubisch, L. v.: Entwicklungsphysiologische Studien an Seeigelkeimen. III. Die normale und- die durch Lithium beeinflußte Anlage der Primitivorgane bei animalen und vegetativen Halbkeimen von Echinocyamus pusillas. Z. wiss. Zool. (Lpz.)124, 469–486 (1925).Google Scholar
  22. —: Über die Determination der larvalen Organe und der Inmaginalanlage bei Seeigeln. Wilhelm Roux' Arch. Entwickl.-Mech. Org.117, 80–122 (1929).Google Scholar
  23. Westin, M.: (Personal communications).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • Ernesto de Angelis
    • 1
    • 2
  • John Runnström
    • 3
  1. 1.Stazione ZoologicaNapoli
  2. 2.II Cattedra di Istologia ed EmbriologiaUniversità di NapoliItaly
  3. 3.Wenner-Gren InstituteUniversity of StockholmSweden

Personalised recommendations