Pflügers Archiv

, Volume 369, Issue 1, pp 79–84

Effect of splanchnicotomy on the renal excretion ofd-glucose in the anaesthetized dog

  • László Szalay
  • Pál Bencsáth
  • Lajos Takács
Article
  • 15 Downloads

Summary

The effects of acute intravenousd-glucose (G) loading were studied on anaesthetized, unilaterally splanchnicotomized (“renal denervation”) dogs. Glomerular filtration rate (GFR) was generally not different on the innervated and denervated side, while urine flow (V), sodium excretion (UNaV) and urinary excretion (UGV) of glucose on the splanchnicotomized side were significantly increased at any plasma G concentration. Tubular reabsorption (TG) as well as Tm of G in denervated kidneys was considerably depressed. In a series of experiments with moderately elevated plasma glucose level glucosuria on the sympathectomized side was found that seems to be the consequence of a lower threshold for G in denervated kidneys. The positive correlation between the tubular reabsorption of Na and G was not influenced by renal denervation.

Key words

Renal denervation Sodium excretion Glucose threshold Glucose reabsorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armitage, P.: Statistical methods in medical research. Oxford-Edinburgh: Blackwell 1971Google Scholar
  2. 2.
    Baker, J. T., Kleinman, L. I.: Glucose reabsorption in the newborn dog kidney. Proc. Soc. exp. Biol. (N.Y.)142, 716–719 (1973)Google Scholar
  3. 3.
    Baker, J. T., Kleinman, L. I.: Relationship between glucose and sodium excretion in the new-born dog. J. Physiol. (Lond.)243, 45–61 (1974)Google Scholar
  4. 4.
    Barajas, I., Müller, J.: The innervation of the juxtaglomerular apparatus and surrounding tubules: A quantitative analysis by serial section electron microsopy. J. Ultrastruct. Res.43, 107–132 (1973)Google Scholar
  5. 5.
    Bello-Reuss, E., Colindres, R. E., Pastoriza-Munoz, E., Mueller, R. A., Gottschalk, C. W.: Effects of acute unilateral renal denervation in the rat. J. clin. Invest.56, 208–217 (1975)Google Scholar
  6. 6.
    Bencsáth, P., Bonvalet, J. P., de Rouffignac, C.: Tubular factors in denervation diuresis and natriuresis. In: Recent advances in renal physiology. International Symposium on Renal Handling of Sodium (H. Wirz and F. Spinelli, eds.), pp. 96–106 Basel: S. Karger 1972Google Scholar
  7. 7.
    Berne, R. M.: Hemodynamics and sodium excretion of denervated kidney in anaesthetized and unanaesthetized dog. Amer. J. Physiol.171, 148–158 (1952)Google Scholar
  8. 8.
    Fourman, J.: Development of the adrenergic innervation of the kidney. VIth International Congress of Nephrology. Abstracts of free communications No. 83, Firenze (Italy) 1975Google Scholar
  9. 9.
    Gill, J. R., Casper, A. G. T.: Role of the sympathetic nervous system in the renal response to hemorrhage. J. clin. Invest.48, 915–922 (1969)Google Scholar
  10. 10.
    Hill, C. M., Douglas, J. F., Rajkumar, K. V., McEvoy, J., McGeown, M. G.: Glycosuria and hyperglycaemia after kidney transplantation. Lancet1974 II, 490–492Google Scholar
  11. 11.
    Judy, W. V., Thompson, J. R., Wilson, M. F.: Effect of isotonic saline loading on renal nerve activity and renal function. Physiologist14, 3 (1971)Google Scholar
  12. 12.
    Kamm, D. E., Levinsky, N. G.: The mechanism of denervation diuresis. J. clin. Invest.44, 93–102 (1965)Google Scholar
  13. 13.
    Keller, D. M.: Glucose excretion in man and dog. Nephron5, 43–66 (1968)Google Scholar
  14. 14.
    Kurtzman, N. A., White, M. G., Rogers, O. W., Flynn III, J. J.: Relationship of sodium reabsorption and glomerular filtration rate to renal glucose reabsorption. J. clin. Invest.51, 127–133 (1972)Google Scholar
  15. 15.
    Van Liew, J. B., Deetjen, P., Boylan, J. W.: Glucose reabsorption in the rat kidney. Pflügers Arch. ges. Physiol.295, 232–244 (1967)Google Scholar
  16. 16.
    Marshall, E. K., Kolls, A. C.: Studies on the nervous control of the kidney in relation to diuresis and urinary secretion. II. A comparison of the changes caused by unilateral splanchnotomy with those caused by unilateral compression of the renal artery. Amer. J. Physiol.49, 317–325 (1919)Google Scholar
  17. 17.
    Müller, J., Barajas, L.: Electron microscopic and histochemical evidence for a tubular innervation in the renal cortex of the monkey. J. Ultrastruct. Res.41, 533–549 (1972)Google Scholar
  18. 18.
    Rohde, R., Deetjen, P.: Die Glucoseresorption in der Rattenniere. Mikropunktionsanalysen der tubulären Glucosekonzentration bei freiem Fluß. Pflügers Arch.303, 219–232 (1968)Google Scholar
  19. 19.
    Schad, H., Seller, H.: Reduction of renal nerve activity by volume expansion in conscious cats. Pflügers Arch.363, 155–159 (1976)Google Scholar
  20. 20.
    Schultze, R. G., Berger, H.: The influence of GFR and saline expansion on TmG of the dog kidney. Kidney Int.3, 291–297 (1973)Google Scholar
  21. 21.
    Slick, G. L., DiBona, G. F., Kaloyanides, G. J.: Renal synpathetic nerve activity in sodium retention of acute caval constriction. Amer. J. Physiol.226, 925–932 (1974)Google Scholar
  22. 22.
    Snedecor, C. W., Cochran, W. G.: Statistical methods (6th ed.). Ames, Iowa: Iowa State Univ. Press, 1967Google Scholar
  23. 23.
    Surtshin, A., Mueller, C. B., White, H. L.: Effect of acute changes in glomerular filtration rate on water and electrolytes excretion: mechanism of denervation diuresis. Amer. J. Physiol.165, 159–173 (1952)Google Scholar
  24. 24.
    Szalay, L., Bencsáth, P., Takács, L.: Effect of splanchnicotomy on the renal excretion of inorganic phosphate in the anaesthetized dog. Pflügers Arch.367, 283–286 (1977a)Google Scholar
  25. 25.
    Szalay, L., Bencsáth, P., Takács, L.: Effect of splanchnicotomy on the renal excretion of para-aminohippuric acid in the anaesthetized dog. Pflügers Arch.367, 287–290 (1977b)Google Scholar
  26. 26.
    Tudvad, F.: Sugar reabsorption in prematures and full term babies. Scand. J. clin. Lab. Invest.1, 281–283 (1949)Google Scholar
  27. 27.
    Vogel, G., Lauterbach, F., Kröger, W.: Die Bedeutung des Natriums für die renalen Transporte von Glucose und Para-Aminohippursäure. Pflügers Arch. ges. Physiol.283, 151–159 (1965)Google Scholar
  28. 28.
    Wen, S. F.: Significance of distal glucose transport in regulating glucose excretion. Clin. Res.22, 550A (1974)Google Scholar
  29. 29.
    Wen, S. F., Boynar, J. W., Jr., Stoll, R. W.: Effects of diuretics on renal glucose transport. Kidney Int.8, 494 (1975)Google Scholar
  30. 30.
    Yamauchi, A., Burnstock, G.: Post-natal development of the innervation of the mouse vas deferens. A fine structural study. J. Anat. (Lond.)104, 17–32 (1969)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • László Szalay
    • 1
  • Pál Bencsáth
    • 1
  • Lajos Takács
    • 1
  1. 1.Second Department of MedicineSemmelweis University Medical SchoolBudapestHungary

Personalised recommendations