Pflügers Archiv

, Volume 356, Issue 4, pp 287–297 | Cite as

Renal phosphate transport: Inhomogeneity of local proximal transport rates and sodium dependence

  • K. Baumann
  • C. de Rouffignac
  • N. Roinel
  • G. Rumrich
  • K. J. Ullrich
  • P. Malorey


The standing droplet method has been used in combination with the peritubular perfusion of blood capillaries to determine the build up of transtubular concentration differences of phosphate (P i ) in the renal proximal convoluted tubule of parathyroidectomized rats. Electron probe analysis was used to estimate P i . At zero time both the intraluminal and the contraluminal P i concentration was 2 mM. The time dependent decrease of the intraluminal P i concentration was approximately 4 times faster in the early than in the late proximal convoluted tubule. After 45 sec an intraluminal steady state concentration of 0.20 mM P i was achieved in the early part. In the late part the intraluminal P i concentration approached a steady state value of 0.54 mM at 120 sec. When sodium free solutions were used the intraluminal P i concentration increased to 2.22 mM in the earlier and to 2.76 mM in the late part. The data indicate that in the proximal convoluted tubule 1. The rate of phosphate reabsorption is greater in the early part than in the later part, and 2. phosphate reabsorption might occur as co-transport with Na+ ions.

Key words

Renal Tubule Phosphate Transport Sodium Dependence Micropuncture Microperfusion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agus, Z. S., Gardner, L. B., Beck, L. H., Goldberg, M.: Effects of parathyroid hormone on renal tubular reabsorption of calcium, sodium and phosphate. Amer. J. Physiol.224, 1143–1148 (1973)Google Scholar
  2. 2.
    Agus, Z. S., Puschett, J. B., Senesky, D., Goldberg, M.: Mode of action of parathyroid hormone and cyclic adenosine 3′,5′-monophosphate on renal tubular phosphate reabsorption in the dog. J. clin. Invest.50, 617–626 (1971)Google Scholar
  3. 3.
    Baumann, K., Bode, F., Chan, Y. L., Goldner, A. M., Papavassiliou, F., Wagner, M.: Reabsorption ofd-glucose from various regions of the rat proximal convoluted tubule: inhomogeneity of local transport rates. (In preparation)Google Scholar
  4. 4.
    Brunette, M. G., Taleb, L., Carriere, S.: Effect of parathyroid hormone on phosphate reabsorption along the nephron of the rat. Amer. J. Physiol.225, 1076–1081 (1973)Google Scholar
  5. 5.
    Caldwell, P. C., Lowe, A. G.: The influx of orthophosphate into squid giant axons. J. Physiol. (Lond.)207, 271–280 (1970)Google Scholar
  6. 6.
    Ferguson, R. K., Wolbach, R. A.: Effects of glucose, phlorizin, and parathyroid extract on renal phosphate transport in chickens. Amer. J. Physiol.212, 1123–1130 (1967)Google Scholar
  7. 7.
    Frick, A.: Reabsorption of inorganic phosphate in the rat kidney. I. Saturation of transport mechanism. II. Suppression of fractional phosphate reabsorption due to expansion of extracellular fluid volume. Pflügers Arch.304, 351–364 (1968)Google Scholar
  8. 8.
    Frömter, E., Geßner, K.: Free-flow potential profile along rat kidney proximal tubule. Pflügers Arch.351, 69–83 (1974)Google Scholar
  9. 9.
    Frömter, E., Geßner, K.: Active transport potentials, membrane diffusion potentials and streaming potentials across rat kidney proximal tubule. Pflügers Arch.351, 85–98 (1974)Google Scholar
  10. 10.
    Frömter, E., Müller, C. W., Knauf, H.: Fixe negative Wandladungen im proximalen Konvolut der Rattenniere und ihre Beeinflussung durch Calciumionen, VI. Symp. der Ges. f. Nephrologie, B. Watschinger, ed., pp. 61–64. Wien: Verlag der Wiener med. Akad. 1969Google Scholar
  11. 11.
    Gekle, D.: Der Einfluß von Parathormon auf die Nierenfunktion. Pflügers Arch.323, 96–120 (1971)Google Scholar
  12. 12.
    Ginsburg, J. M.: Effect of glucose and free fatty acid on phosphate transport in dog kidney. Amer. J. Physiol.222, 1153–1160 (1972)Google Scholar
  13. 13.
    Ginsburg, J. M., Lotspeich, W. D.: Interrelations of arsenate and phosphate transport in the dog kidney. Amer. J. Physiol.205, 707–714 (1963)Google Scholar
  14. 14.
    Harrison, H. E., Harrison, H. C.: Sodium, potassium, and intestinal transport of glucose,l-tyrosine, phosphate, and calcium. Amer. J. Physiol.205, 107–111 (1963)Google Scholar
  15. 15.
    Hoffmann, N., Thees, M., Kinne, R.: Transport of inorganic phosphate by isolated renal plasma membrane-vesicles. Pflügers Arch.355, R 49 (1975)Google Scholar
  16. 16.
    Kedem, O., Caplan, S. R.: Degree of coupling and its relation to efficiency of energy conversion. Transact. Farad. Soc.61, 1897–1911 (1965)Google Scholar
  17. 17.
    Le Grimellec, C.: Micropuncture study along the proximal convoluted tubule: different electrolytes handlings in the first loops usually unaccessible to micropuncture. In: European Colloquium on Renal Physiology, Vol. 30, p. 177. Paris: Editions INSERM 1974Google Scholar
  18. 18.
    Le Grimellec, C., Roinel, N., Morel, F.: Simultaneous Mg, Ca, P, K, Na and Cl analysis in rat tubular fluid. I. During perfusion of either inulin or ferrocyanide. Pflügers Arch.340, 181–196 (1973)Google Scholar
  19. 19.
    Lingard, J., Rumrich, G., Young, J. A.: Reabsorption ofl-glutamine andl-histidine from various regions of the rat proximal convolution studied by stationary microperfusion: Evidence that the proximal convolution is not homogeneous. Pflügers Arch.342, 1–12 (1973)Google Scholar
  20. 20.
    Loeschke, K., Baumann, K., Renschler, H., Ullrich, K. J. mit einem mathematischen Anhang von G. Fuchs: Differenzierung zwischen aktiver und passiver Komponente desd-Glucosetransports am proximalen Konvolut der Rattenniere. Pflügers Arch.305, 118–138 (1969)Google Scholar
  21. 21.
    Massry, S. G., Coburn, J. W., Kleeman, C. R.: The influence of extracellular volume expansion on renal phosphate reabsorption in the dog. J. clin. Invest.48, 1237–1245 (1969)Google Scholar
  22. 22.
    Morel, F., Roinel, N.: Application de la microsonde électronique à l'analyse élémentaire quantitative d'échantillons liquides d'un volume inférieur à 10−9 l. J. Chim. phys.66, 1984 (1969)Google Scholar
  23. 23.
    Murayama, Y., Morel, F., Le Grimellec, C.: Phosphate, calcium and magnesium transfers in proximal tubules and loops of Henle, as measured by single nephron microperfusion experiments in the rat. Pflügers Arch.333, 1–16 (1972)Google Scholar
  24. 24.
    Murer, H., Hopfer, U.: Demonstration of electrogenic Na+ dependentd-glucose transport in intestinal brush border membranes. Proc. nat. Acad. Sci. (Wash.)71, 484–488 (1974)Google Scholar
  25. 25.
    Murer, H., Hopfer, U.: Evidence for a Na+-H+ exchange mechanism located in the brush border membrane of small intestinal epithelial cells. (In preparation)Google Scholar
  26. 26.
    Murer, H., Sigrist-Nelson, K., Hopfer, U.: Interaction between sugar and amino acid transport in rat small intestine. Studies with isolated vesicles from brush border membrane. (Accepted by J. biol. Chem.)Google Scholar
  27. 27.
    Pitts, R. F., Alexander, R. S.: The renal reabsorptive mechanism for inorganic phosphate in normal and acidotic dogs. Amer. J. Physiol.142, 648–662 (1944)Google Scholar
  28. 28.
    Sauer, F.: Appendix: Noneequilibrium thermodynamics of kidney tubule transport. In: Handbook of Physiology, Renal Physiology, Sect. 8, chapter 12, J. Orloff and R. W. Berliner, eds., pp. 399–414. Washington: The American Physiological Society 1973Google Scholar
  29. 29.
    Siegenthaler, P. A., Belsky, M. M., Goldstein, S.: Phosphate uptake in an obligately marine fungus: A specific requirement for sodium. Science155, 93–94 (1967)Google Scholar
  30. 30.
    Sigrist-Nelson, K., Murer, H., Hopfner, U.: “Active” alanine transport in isolated brush border membranes. (Accepted by J. biol. Chem.)Google Scholar
  31. 31.
    Staum, B. B., Hamburger, R. J., Goldberg, M: Tracer microinjection study of renal tubular phosphate reabsorption in the rat. J. Clin. Invest.51, 2271–2276 (1972)Google Scholar
  32. 32.
    Strickler, J. C., Thompson, D. D., Klose, R. M., Giebisch, G.: Micropuncture study of inorganic phosphate excretion in the rat. J. clin. Invest.43, 1596–1607 (1964)Google Scholar
  33. 33.
    Suki, W. N., Martinez-Maldonado, M., Rouse, D., Terry, A.: Effect of expansion of extracellular fluid volume on renal phosphate handling. J. clin. Invest.48, 1888–1894 (1969)Google Scholar
  34. 34.
    Taylor, A. N.: In vitro phosphate transport in chick illeum: Effect of cholecalciferol, calcium, sodium and metabolic inhibitors. J. Nutr.104, 489–494 (1974)Google Scholar
  35. 35.
    Ullrich, K. J., Frömter, E., Baumann, K.: Micropuncture and microanalysis in kidney physiology. In: Laboratory Techniques in Membrane Biophysics, H. Passow and R. Stämpfli, eds., pp. 106–129. Berlin-Heidelberg-New York: Springer 1969Google Scholar
  36. 36.
    Ullrich, K. J., Rumrich, G., Baumann, K.: Renal H+ (glycodiazine) transport: inhibitors, inhomogeneity of local proximal transport, sodium dependence and chronic adaptation. Pflügers Arch. (in press, 1975)Google Scholar
  37. 37.
    Ullrich, K. J., Rumrich, G., Klöss, S.: Specificity and sodium dependence of the active sugar transport in the proximal convolution of the rat kidney. Pflügers Arch.351, 35–48 (1974)Google Scholar
  38. 38.
    Ullrich, K. J., Rumrich, G., Klöss, S.: Sodium dependence of the amino acid transport in the proximal convolution of the rat kidney. Pflügers Arch.351, 49–60 (1974)Google Scholar
  39. 39.
    Wen, S.-F.: Micropuncture studies of phosphate transport in the proximal tubule of the dog. The relationship to sodium reabsorption. J. clin. Invest.53, 143–153 (1974)Google Scholar
  40. 40.
    Windhager, E. E., Lewy, J. E., Spitzer, A.: Peritubuläre Kontrolle der Flüssigkeitsresorption im proximalen Tubulus. VI. Symp. Ges. f. Nephrologie 1969, B. Watschinger, ed., pp. 25–34. Wien: Verlag der Wiener Med. Akad. 1969Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • K. Baumann
    • 1
    • 2
  • C. de Rouffignac
    • 1
    • 2
  • N. Roinel
    • 1
    • 2
  • G. Rumrich
    • 1
    • 2
  • K. J. Ullrich
    • 1
    • 2
  • P. Malorey
    • 1
    • 2
  1. 1.Max-Planck-Institut für BiophysikFrankfurt/M.Germany
  2. 2.Departement de BiologieCEN-SaclayFrance

Personalised recommendations