Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Renal phosphate transport: Inhomogeneity of local proximal transport rates and sodium dependence

Summary

The standing droplet method has been used in combination with the peritubular perfusion of blood capillaries to determine the build up of transtubular concentration differences of phosphate (P i ) in the renal proximal convoluted tubule of parathyroidectomized rats. Electron probe analysis was used to estimate P i . At zero time both the intraluminal and the contraluminal P i concentration was 2 mM. The time dependent decrease of the intraluminal P i concentration was approximately 4 times faster in the early than in the late proximal convoluted tubule. After 45 sec an intraluminal steady state concentration of 0.20 mM P i was achieved in the early part. In the late part the intraluminal P i concentration approached a steady state value of 0.54 mM at 120 sec. When sodium free solutions were used the intraluminal P i concentration increased to 2.22 mM in the earlier and to 2.76 mM in the late part. The data indicate that in the proximal convoluted tubule 1. The rate of phosphate reabsorption is greater in the early part than in the later part, and 2. phosphate reabsorption might occur as co-transport with Na+ ions.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Agus, Z. S., Gardner, L. B., Beck, L. H., Goldberg, M.: Effects of parathyroid hormone on renal tubular reabsorption of calcium, sodium and phosphate. Amer. J. Physiol.224, 1143–1148 (1973)

  2. 2.

    Agus, Z. S., Puschett, J. B., Senesky, D., Goldberg, M.: Mode of action of parathyroid hormone and cyclic adenosine 3′,5′-monophosphate on renal tubular phosphate reabsorption in the dog. J. clin. Invest.50, 617–626 (1971)

  3. 3.

    Baumann, K., Bode, F., Chan, Y. L., Goldner, A. M., Papavassiliou, F., Wagner, M.: Reabsorption ofd-glucose from various regions of the rat proximal convoluted tubule: inhomogeneity of local transport rates. (In preparation)

  4. 4.

    Brunette, M. G., Taleb, L., Carriere, S.: Effect of parathyroid hormone on phosphate reabsorption along the nephron of the rat. Amer. J. Physiol.225, 1076–1081 (1973)

  5. 5.

    Caldwell, P. C., Lowe, A. G.: The influx of orthophosphate into squid giant axons. J. Physiol. (Lond.)207, 271–280 (1970)

  6. 6.

    Ferguson, R. K., Wolbach, R. A.: Effects of glucose, phlorizin, and parathyroid extract on renal phosphate transport in chickens. Amer. J. Physiol.212, 1123–1130 (1967)

  7. 7.

    Frick, A.: Reabsorption of inorganic phosphate in the rat kidney. I. Saturation of transport mechanism. II. Suppression of fractional phosphate reabsorption due to expansion of extracellular fluid volume. Pflügers Arch.304, 351–364 (1968)

  8. 8.

    Frömter, E., Geßner, K.: Free-flow potential profile along rat kidney proximal tubule. Pflügers Arch.351, 69–83 (1974)

  9. 9.

    Frömter, E., Geßner, K.: Active transport potentials, membrane diffusion potentials and streaming potentials across rat kidney proximal tubule. Pflügers Arch.351, 85–98 (1974)

  10. 10.

    Frömter, E., Müller, C. W., Knauf, H.: Fixe negative Wandladungen im proximalen Konvolut der Rattenniere und ihre Beeinflussung durch Calciumionen, VI. Symp. der Ges. f. Nephrologie, B. Watschinger, ed., pp. 61–64. Wien: Verlag der Wiener med. Akad. 1969

  11. 11.

    Gekle, D.: Der Einfluß von Parathormon auf die Nierenfunktion. Pflügers Arch.323, 96–120 (1971)

  12. 12.

    Ginsburg, J. M.: Effect of glucose and free fatty acid on phosphate transport in dog kidney. Amer. J. Physiol.222, 1153–1160 (1972)

  13. 13.

    Ginsburg, J. M., Lotspeich, W. D.: Interrelations of arsenate and phosphate transport in the dog kidney. Amer. J. Physiol.205, 707–714 (1963)

  14. 14.

    Harrison, H. E., Harrison, H. C.: Sodium, potassium, and intestinal transport of glucose,l-tyrosine, phosphate, and calcium. Amer. J. Physiol.205, 107–111 (1963)

  15. 15.

    Hoffmann, N., Thees, M., Kinne, R.: Transport of inorganic phosphate by isolated renal plasma membrane-vesicles. Pflügers Arch.355, R 49 (1975)

  16. 16.

    Kedem, O., Caplan, S. R.: Degree of coupling and its relation to efficiency of energy conversion. Transact. Farad. Soc.61, 1897–1911 (1965)

  17. 17.

    Le Grimellec, C.: Micropuncture study along the proximal convoluted tubule: different electrolytes handlings in the first loops usually unaccessible to micropuncture. In: European Colloquium on Renal Physiology, Vol. 30, p. 177. Paris: Editions INSERM 1974

  18. 18.

    Le Grimellec, C., Roinel, N., Morel, F.: Simultaneous Mg, Ca, P, K, Na and Cl analysis in rat tubular fluid. I. During perfusion of either inulin or ferrocyanide. Pflügers Arch.340, 181–196 (1973)

  19. 19.

    Lingard, J., Rumrich, G., Young, J. A.: Reabsorption ofl-glutamine andl-histidine from various regions of the rat proximal convolution studied by stationary microperfusion: Evidence that the proximal convolution is not homogeneous. Pflügers Arch.342, 1–12 (1973)

  20. 20.

    Loeschke, K., Baumann, K., Renschler, H., Ullrich, K. J. mit einem mathematischen Anhang von G. Fuchs: Differenzierung zwischen aktiver und passiver Komponente desd-Glucosetransports am proximalen Konvolut der Rattenniere. Pflügers Arch.305, 118–138 (1969)

  21. 21.

    Massry, S. G., Coburn, J. W., Kleeman, C. R.: The influence of extracellular volume expansion on renal phosphate reabsorption in the dog. J. clin. Invest.48, 1237–1245 (1969)

  22. 22.

    Morel, F., Roinel, N.: Application de la microsonde électronique à l'analyse élémentaire quantitative d'échantillons liquides d'un volume inférieur à 10−9 l. J. Chim. phys.66, 1984 (1969)

  23. 23.

    Murayama, Y., Morel, F., Le Grimellec, C.: Phosphate, calcium and magnesium transfers in proximal tubules and loops of Henle, as measured by single nephron microperfusion experiments in the rat. Pflügers Arch.333, 1–16 (1972)

  24. 24.

    Murer, H., Hopfer, U.: Demonstration of electrogenic Na+ dependentd-glucose transport in intestinal brush border membranes. Proc. nat. Acad. Sci. (Wash.)71, 484–488 (1974)

  25. 25.

    Murer, H., Hopfer, U.: Evidence for a Na+-H+ exchange mechanism located in the brush border membrane of small intestinal epithelial cells. (In preparation)

  26. 26.

    Murer, H., Sigrist-Nelson, K., Hopfer, U.: Interaction between sugar and amino acid transport in rat small intestine. Studies with isolated vesicles from brush border membrane. (Accepted by J. biol. Chem.)

  27. 27.

    Pitts, R. F., Alexander, R. S.: The renal reabsorptive mechanism for inorganic phosphate in normal and acidotic dogs. Amer. J. Physiol.142, 648–662 (1944)

  28. 28.

    Sauer, F.: Appendix: Noneequilibrium thermodynamics of kidney tubule transport. In: Handbook of Physiology, Renal Physiology, Sect. 8, chapter 12, J. Orloff and R. W. Berliner, eds., pp. 399–414. Washington: The American Physiological Society 1973

  29. 29.

    Siegenthaler, P. A., Belsky, M. M., Goldstein, S.: Phosphate uptake in an obligately marine fungus: A specific requirement for sodium. Science155, 93–94 (1967)

  30. 30.

    Sigrist-Nelson, K., Murer, H., Hopfner, U.: “Active” alanine transport in isolated brush border membranes. (Accepted by J. biol. Chem.)

  31. 31.

    Staum, B. B., Hamburger, R. J., Goldberg, M: Tracer microinjection study of renal tubular phosphate reabsorption in the rat. J. Clin. Invest.51, 2271–2276 (1972)

  32. 32.

    Strickler, J. C., Thompson, D. D., Klose, R. M., Giebisch, G.: Micropuncture study of inorganic phosphate excretion in the rat. J. clin. Invest.43, 1596–1607 (1964)

  33. 33.

    Suki, W. N., Martinez-Maldonado, M., Rouse, D., Terry, A.: Effect of expansion of extracellular fluid volume on renal phosphate handling. J. clin. Invest.48, 1888–1894 (1969)

  34. 34.

    Taylor, A. N.: In vitro phosphate transport in chick illeum: Effect of cholecalciferol, calcium, sodium and metabolic inhibitors. J. Nutr.104, 489–494 (1974)

  35. 35.

    Ullrich, K. J., Frömter, E., Baumann, K.: Micropuncture and microanalysis in kidney physiology. In: Laboratory Techniques in Membrane Biophysics, H. Passow and R. Stämpfli, eds., pp. 106–129. Berlin-Heidelberg-New York: Springer 1969

  36. 36.

    Ullrich, K. J., Rumrich, G., Baumann, K.: Renal H+ (glycodiazine) transport: inhibitors, inhomogeneity of local proximal transport, sodium dependence and chronic adaptation. Pflügers Arch. (in press, 1975)

  37. 37.

    Ullrich, K. J., Rumrich, G., Klöss, S.: Specificity and sodium dependence of the active sugar transport in the proximal convolution of the rat kidney. Pflügers Arch.351, 35–48 (1974)

  38. 38.

    Ullrich, K. J., Rumrich, G., Klöss, S.: Sodium dependence of the amino acid transport in the proximal convolution of the rat kidney. Pflügers Arch.351, 49–60 (1974)

  39. 39.

    Wen, S.-F.: Micropuncture studies of phosphate transport in the proximal tubule of the dog. The relationship to sodium reabsorption. J. clin. Invest.53, 143–153 (1974)

  40. 40.

    Windhager, E. E., Lewy, J. E., Spitzer, A.: Peritubuläre Kontrolle der Flüssigkeitsresorption im proximalen Tubulus. VI. Symp. Ges. f. Nephrologie 1969, B. Watschinger, ed., pp. 25–34. Wien: Verlag der Wiener Med. Akad. 1969

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baumann, K., de Rouffignac, C., Roinel, N. et al. Renal phosphate transport: Inhomogeneity of local proximal transport rates and sodium dependence. Pflugers Arch. 356, 287–297 (1975). https://doi.org/10.1007/BF00580003

Download citation

Key words

  • Renal Tubule
  • Phosphate Transport
  • Sodium Dependence
  • Micropuncture
  • Microperfusion