Chemistry of Natural Compounds

, Volume 19, Issue 1, pp 21–29

The flavonoids of the rhizomes ofRhodiola rosea. II. A flavonolignan and glycosides of herbacetin

  • G. G. Zapesochnaya
  • V. A. Kurkin
Article

Abstract

Three new derivatives of herbacetin (3,4′,5,7,8-pentahydroxyflavone) have been isolated from the rhizomes of roseroot sedum for the first time. Conclusions concerning their structures have been drawn on the basis of chemical transformations and UV, PMR, and mass spectra. The structure of herbacetin 7-O-α-rhamnopyranoside is proposed for rhodionin (I). Rhodiosin (II) has the structure of herbacetin 7-O-(3″-O-β-D-glucopyranosyl-α-L-rhamnopyranoside). The biose of which it contains a residue, which has been called rhodiose, is the first example of a 3-O-β-D-glucopyranosyl-L-rhamnopyranose residue to be found in natural flavonoid glycosides. A probable structure is put forward for the flavonolignan rhodiolin (III) — the product of the oxidative coupling of coniferyl alcohol with the 7,8-dihydroxy grouping of herbacetin.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. A. Kurkin, G. G. Zapesochnaya, and V. G. Klyaznika, Khim. Prir. Soedin., 581 (1982).Google Scholar
  2. 2.
    L. Hörhammer, H. J. Gehrmann, and L. Endres, Arch. Pharm.,262/64, 113 (1959).Google Scholar
  3. 3.
    T. T. Pangarova and G. G. Zapesochnaya, Khim. Prir. Soedin., 712 (1975).Google Scholar
  4. 4.
    G. G. Zapesochnaya and T. T. Pangarova, Khim. Prir. Soedin., 554 (1973).Google Scholar
  5. 5.
    G. G. Zapesochnaya, Khim. Prir. Soedin., 695 (1982).Google Scholar
  6. 6.
    G. G. Zapesochnaya, N. A. Tyukavkina, and S. K. Eremin, Khim. Prir. Soedin., 180 (1982).Google Scholar
  7. 7.
    W. Karrer, Konstitution und Vorkommen der organischen Pflanzenstoffe, Birkhaüser Verlag, Basel (1958), p. 261.Google Scholar
  8. 8.
    T. J. Mabry, K. R. Markham, and M. B. Thomas, The Systematic Identification of Flavonoids, Springer Verlag, Berlin (1970).Google Scholar
  9. 9.
    T. T. Pangarova, G. G. Zapesochnaya, and E. L. Nukhimovskii, Khim. Prir. Soedinen., 667 (1974).Google Scholar
  10. 10.
    G. G. Zapesochnaya, Khim. Prir. Soedin., 519 (1978).Google Scholar
  11. 11.
    M. Sakakibara, B. N. Timmermann, N. Nakatani, H. Waldrum, and T. J. Mabry, Phytochemistry,14, 849 (1975).Google Scholar
  12. 12.
    B. Janiak and R. Hänsel, Planta Med.,8, 71 (1960).Google Scholar
  13. 13.
    H. Wagner, in: Recent Flavonoid Research, Akademiai Kiado, Budapest, 51 (1973).Google Scholar
  14. 14.
    A. Pelter and R. Hänsel, Chem. Ber.,108, 790 (1975).Google Scholar
  15. 15.
    R. Hänsel, J. Schulz, and A. Pelter, Chem. Ber.,108, 1482 (1975).Google Scholar
  16. 16.
    L. Merlini, A. Zanarotti, A. Pelter, M. P. Rochefort, and R. Hänsel, J. Chem. Soc. Chem. Commun., 695 (1979).Google Scholar
  17. 17.
    A. Arnone, L. Merlini, and A. Zanarotti, J. Chem. Soc. Chem. Commun., 696 (1979).Google Scholar
  18. 18.
    C. Köppel and H. Schwartz, Org. Mass Spectrom,11, 101 (1976).Google Scholar
  19. 19.
    G. G. Zapesochnaya and V. A. Kurkin, Khim. Prir. Soedin., 723 (1982).Google Scholar
  20. 20.
    A. R. Martin, S. K. Mallick, and J. F. Caputo, J. Org. Chem.,39, 1808 (1974).Google Scholar
  21. 21.
    R. Hansel, J. Schulz, A. Pelter, H. Rimpler, and A. F. Rizk, Tetrahedron Lett., 4417 (1969).Google Scholar
  22. 22.
    K. R. Ranganathan and T. R. Seshadri, Tetrahedron Lett., 3481 (1973).Google Scholar
  23. 23.
    K. R. Ranganathan and T. R. Seshadri, Indian J. Chem.,12, 993 (1974).Google Scholar
  24. 24.
    H. Nielsen and P. Arends, Phytochemistry,17, 2040 (1978).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • G. G. Zapesochnaya
  • V. A. Kurkin

There are no affiliations available

Personalised recommendations