Earth, Moon, and Planets

, Volume 65, Issue 3, pp 201–246 | Cite as

A Critical review of theoretical models of negatively polarized light scattered by atmosphereless solar system bodies

  • Yu. G. Shkuratov
  • K. Muinonen
  • E. Bowell
  • K. Lumme
  • J. I. Peltoniemi
  • M. A. Kreslavsky
  • D. G. Stankevich
  • V. P. Tishkovetz
  • N. V. Opanasenko
  • L. Y. Melkumova


About a dozen physical mechanisms and models aspire to explain the negative polarization of light scattered by atmosphereless celestial bodies. This is too large a number for the reliable interpretation of observational data. Through a comparative analysis of the models, our main goal is to answer the question: Does any one model have an advantage over the others? Our analysis is based on new laboratory polarimetric and photometric data as well as on theoretical results. We show that the widely used models due to Hopfield and Wolff cannot realistically explain the phase-angle dependence of the degree of polarization observed at small phase angles. The so-called interference or coherent backscattering mechanism is the most promising model. Models based on that mechanism use well-defined physical parameters to explain both negative polarization and the opposition effect. They are supported by laboratory experiments, particularly those showing enhancement of negative polarization with decreasing particle size down to the wavelength of light. According to the interference mechanism, pronounced negative branches of polarization, like those of C-class asteroids, may indicate a high degree of optical inhomogeneity of light-scattering surfaces at small scales. The mechanism also seems appropriate for treating the negative polarization and opposition effects of cometary dust comae, planetary rings, and the zodiacal light.

Key words

polarization negative polarization laboratory polarimetry atmosphereless bodies coherent backscattering light scattering diffraction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bandermann, L. W., Kemp, J. C., and Wolstencroft, R. D.: 1972, ‘Circular Polarization of Light Scattered from Rough Surfaces’,Mon. Not. R. Astr.,Soc. 158, 291–304.Google Scholar
  2. Belobrov, A. B., Kopilovich, L. E., and Fuchs, I. M.: 1990, ‘A Numerical Method of Analyzing the Multiple Scattering of Light by Rough Surfaces’, Radio Astronomy Institute of Ukrainian Academy of Sciences, Preprint No. 44.Google Scholar
  3. Born, M. and Wolf, E.: 1970,Principles of Optics. Pergamon Press, New York.Google Scholar
  4. Bowell, E.: 1973, ‘Analyse polarimétrique de la Lune, des roches terrestres et des échantillons lunaires avec application aux astéroïfdes et satellites’, Doctoral thesis, University of Paris VI. 114 pp.Google Scholar
  5. Bowell, E., Dollfus, A., and Geake, J. E.: 1972, ‘Polarimetric Properties of the Lunar Surface and its Interpretation. Part 5’,Proc. 3rd Lunar Sci. Conf., Lunar and Planetary Institute, Houston, pp. 3103–3126.Google Scholar
  6. Bowell, E., Dollfus, A., Zellner, B., and Geake, J.: 1973, ‘Polarimetric Properties of the Lunar Surface and its Interpretation. Part 6: Albedo Determination from Polarimetric Characteristics’,Proc. 4th Lunar Sci. Conf., Lunar and Planetary Science Institute, Houston, pp. 3167–3174.Google Scholar
  7. Brooke, T. Y., Knacke, R. F., and Joyce, R. R.: 1987, ‘The Near-Infrared Polarization and Color of Comet P/Halley’,Astron. Astrophys. 187, 621–624.Google Scholar
  8. Brownlee, D. E.: 1978, ‘Microparticle Studies by Sampling Techniques’, in J. McDonnell (ed.),Cosmic Dust, John Wiley and Sons, New York, pp. 295–336.Google Scholar
  9. Dobrovolsky, O. V., Kiselev, N. N., and Chernova, G. P.: 1986, ‘Polarimetry of Comets: A Review’,Earth, Moon, anal Planets 34, 189–200.Google Scholar
  10. Dollfus, A.: 1956, ‘Polarisation de la lumière renvoyée par les corps solides et les nuages naturels’,Ann. Astrophys. 19, 83–113.Google Scholar
  11. Dollfus, A.: 1961, ‘Polarization Studies of Planets’, in G. P. Kuiper and B. M. Middlehurst (eds.),Planets and Satellites, Univ. of Chicago Press, Chicago, pp. 343–399.Google Scholar
  12. Dollfus, A.: 1985, ‘Photopolarimetric Sensing of Planetary Surfaces’,Adv. Space Res. 5, 47–58.Google Scholar
  13. Dollfus, A. and Bowell, E.: 1971, ‘Polarimetric Properties of the Lunar Surface and its Interpretation. I. Telescopic Observations’,Astron. Astrophys. 10, 29–53.Google Scholar
  14. Dollfus, A., Bowell, E., and Titulaer, C.: 1971a, ‘Polarimetric Properties of the Lunar Surface and its Interpretation. II. Terrestrial Samples in Orange Light’,Astron. Astrophys. 10, 450–466.Google Scholar
  15. Dollfus, A., Geake, J. E., and Titulaer, C.: 1971b, ‘Polarimetric Properties of the Lunar Surface and its Interpretation. Part 4: Apollo 11 and Apollo 12 Lunar Samples’,Proc. 2nd Lunar Sci. Conf., MIT Press, pp. 2285–2300.Google Scholar
  16. Dollfus, A. and Geake, J.E.: 1975, ‘Polarimetric Properties of the Lunar Surface and its Interpretation. Part VII. Other Solar System Objects’,Proc. 6th Lunar Sci. Conf., Geochim. Cosmochim. Acta Suppl. 6 3, 2749–2768.Google Scholar
  17. Dollfus, A., Mandeville, J. C., and Duseaux, M.: 1979, ‘The Nature of M-type Asteroids from Optical Polarimetry’,Icarus 37, 124–132.Google Scholar
  18. Dollfus, A. and Titulaer, C.: 1971, ‘Polarimetric Properties of the Lunar Surface and its Interpretation. III. Volcanic Samples in Several Wavelengths’,Astron. Astrophys. 12, 199–209.Google Scholar
  19. Dollfus, A. and Wolff, M.: 1981, ‘Theory and Application of the Negative Branch of Polarization for Airless Planetary Objects’,Proc. 12th Lunar Planet. Sci. Conf., Lunar and Planetary Science Institute, Houston, pp. 232–234.Google Scholar
  20. Dollfus, A., Wolff, M., Geake, J. E., Lupishko, D. F., and Dougherty, L. M.: 1989, ‘Photopolarimetry of Asteroids’, in R. Binzel, T. Gehrels, and M. Matthews (eds.),Asteroids II, Univ. Arizona Press, Tucson, pp. 594–616.Google Scholar
  21. Doose, L. R. and Coffeen, D. L.: 1974, ‘Comet Bennett 1970II’, in T. Gehrels (ed.),Planets, Stars and Nebulae Studies with Photopolarimetry, Univ. Arizona Press, Tucson, pp. 818–820.Google Scholar
  22. Fuller, K. A.: 1989, ‘Some Novel Features of Morphology Dependent Resonances of Bispheres’,Appl. Opt. 28(18), 3788–3790.Google Scholar
  23. Geake, J. E., Geake, M., and Zellner, B. H.: 1984, ‘Experiments to Test Theoretical Models of the Polarization of Light by Rough Surfaces’,Mon. Not. R. Astr. Soc. 210, 89–112.Google Scholar
  24. Geake, J. E. and Geake, M.: 1990, ‘A Remote-Sensing Method for Sub-Wavelength Grains on Planetary Surfaces by Optical Polarimetry’,Mon. Not. R. Astr. Soc. 245, 46–55.Google Scholar
  25. Hapke, B.: 1968, ‘Lunar Surface Composition Inferred from Optical Properties’,Science 159, 76–79.Google Scholar
  26. Hapke, B., Nelson, R. M., and Smithe, W. D.: 1993, ‘The Opposition Effect of the Moon: The Contribution of Coherent Backscatter’,Science 260, 509–511.Google Scholar
  27. Hapke, B., Nelson, R. M., Smithe, W. al.: 1991, ‘Laboratory Study of the Opposition Effect’,Bull. Amer. Astron. Soc. 23, 9.Google Scholar
  28. Hapke, B. and Williams, A.: 1988, ‘Search for Anomalous Opposition Spike in Crystalline Powders’,Bull. Amer. Astron. Soc. 20, 808.Google Scholar
  29. Hopfield, J.: 1966, ‘Mechanism of Lunar Polarization’,Science 151, 1380–1381.Google Scholar
  30. Horton, C. W. and Watson, R. B.: 1950, ‘On the Diffraction of Radar Waves by a Semi-Infinite Conduction Screen’,J. Appl. Phys. 21, 16–21.Google Scholar
  31. Jentzsch, F.: 1927, ‘Uber die beugung des lichtes an stahlscheiden’,Ann. der Phys. 84, 292–312.Google Scholar
  32. Kemp, G. C., Henson, G. D., Steiner, C. T., and Powell, E. R.: 1987, ‘The Optical Polarization of the Sun Measured at a Sensitivity of Parts in Ten Million’,Nature 326, 270–273.Google Scholar
  33. Kiselev, N. N. and Chernova, G. P.: 1981, ‘Phase Function of Polarization and Brightness and Nature of Cometary Atmosphere Particles’,Icarus 48, 473–481.Google Scholar
  34. Kolokolova, L. O.: 1985, ‘On Correlations between Certain Photometric and Polarimetric Characteristics of Light Scattered by Surface of Atmosphereless Celestial Bodies’, in A. V. Morozhenko (ed.),Photometric and Polarimetric Studies of Celestial Bodies, Naukova Dumka, Kiev, pp.38–42 (in Russian).Google Scholar
  35. Kolokolova, L. O.: 1990, ‘Dependence of Polarization on Optical and Structural Properties of the Surface of Atmosphereless Bodies’,Icarus 84, 305–314.Google Scholar
  36. Kravtsov, Yu. A. and Saichev, A. I.: 1982, ‘Effects of Double Passage of Wave in Randomly Inhomogeneous Media’,Uspekhi Fizicheckikh Nauk 25, 494–508 (in Russian).Google Scholar
  37. Kuga, J. and Ishimaru, A.: 1984, ‘Retroreflectance from a Dense Distribution of Spherical Particles’,J. Opt. Soc. Amer. 1, 831–835.Google Scholar
  38. Lumme, K.: 1979, ‘A Model for the Polarization of Atmosphereless Bodies’,Bull. Amer. Astron. Soc. 11, 562.Google Scholar
  39. Lumme, K., Bowell, E., and Zellner, B.: 1980, ‘The Negative Polarization of Light Scattered from Rough Surfaces Seems to be Largely due to Diffraction’,Bull. Amer. Astron. Soc. 12, 663.Google Scholar
  40. Lumme, K. and Rahola, J.: 1993, ‘Light Scattering by Solar System Dust Particles in the Discrete-Dipole Approximation’, Abstr. IAU Symp. 160:Asteroids, Comets, Meteors. Belgirate, Italy, June 14–18, p. 195.Google Scholar
  41. Lyot, B.: 1929, ‘Recherches sur la polarisation de la lumiére des planétes et de quelques substances terrestres’,Ann. Obs. Meudon 8, 1–161.Google Scholar
  42. McCoyd, G. C.: 1967, ‘Polarization Properties of Simple Dielectric Rough Surface Model’,J. Opt. Soc. Amer. 57, 1345–1350.Google Scholar
  43. Mishchenko, M. I.: 1993, ‘On the Nature of the Polarization Opposition Effect Exhibited by Saturn's Rings’,Astrophys J. 411, 351–361.Google Scholar
  44. Mishchenko, M. I. and Dlugach, J. M.: 1992, ‘The Amplitude of the Opposition Effect due to Weak Localization of Photons in Discrete Disordered Media’,Astrophys. Space Sci. 189, 151–154.Google Scholar
  45. Morozshenko, A. V., Kolokolova, L. O., Kajmakov, E. A., and Lyzunkova, I. S.: 1986, ‘Possible Nature of Cometary Atmosphere Particles’,Icarus 66, 223–229.Google Scholar
  46. Muinonen, K.: 1989a, ‘Scattering of Light by Crystals: A Modified Kirchhoff Approximation’,Appl. Opt. 28, 3044–3050.Google Scholar
  47. Muinonen, K.: 1989b, ‘Electromagnetic Scattering by Two Interacting Dipoles’,Proc. of the 1989 URSI Electromagnetic Theory Symposium, Stockholm, pp. 428–430.Google Scholar
  48. Muinonen, K.: 1990,Light Scattering by Inhomogeneous Media: Backward Enhancement and Reversal of Linear Polarization. Ph.D. Thesis. Report 3/1990, Observatory and Astrophysics Laboratory, University of Helsinki, Finland.Google Scholar
  49. Muinonen, K.: 1994, ‘Coherent Backscattering by Solar System Dust Particles’, in A. Milani, M. Di Martino, A. Cellino (eds.),IAU Symposium No. 160, Asteroids, Comets, Meteors 1993, Kluwer Academic Publishers, Dordrecht, pp. 271–296.Google Scholar
  50. Muinonen, K. and Lumme, K.: 1990, ‘Light Scattering by Solar System Dust: The Opposition Effect and the Reversal of Polarization’,Bull. Amer. Astron. Soc. 22, 1033.Google Scholar
  51. Muinonen, K., Lumme, K., Peltoniemi, J., and Irvine, W. M.: 1989, ‘Light Scattering by Randomly Oriented Crystals’,Appl. Opt. 28, 3051–3060.Google Scholar
  52. Muinonen, K., Sihvola, A. H., Lindell, I. V., and Lumme, K. A.: 1991, ‘Scattering by a Small Object Close to an Interface. II. Study of Backscattering’,J. Opt. Soc. Amer. A8, 477–482.Google Scholar
  53. Muinonen, K., Peltoniemi, J. I., and Lumme, K.: 1992, ‘Is the Negative Linear Polarization of Solar System Dust Caused by Shadowing or Coherent Backscattering?’, inWorkshop on Polarization III, Light Scattered by Irregular Dust Grains, with Emphasis on Cometary and Interplanetary Dust, Paris, France, p. 4.Google Scholar
  54. Mukai, T., Mukai, S., and Kikuchi, S.: 1987, ‘Complex Refractive Index of Grain Material Deduced from the Visible Polarimetry of Comet P/Halley’,Astron. Astrophys. 187, 650–652.Google Scholar
  55. Nefyodov, E. I.: 1979,Electromagnetic Wave Diffraction by Dielectric Structures, Nauka, Moscow, 272 p. (in Russian).Google Scholar
  56. Öhman, Y.: 1955, ‘A Tentative Explanation of the Polarization in Diffuse Reflection’,Stockholm Obs. Ann. 18, 1–10.Google Scholar
  57. Ohtsuki, Y. H.: 1983,Charged Beam Interaction With Solids, Taylor and Francis Ltd., London, New York.Google Scholar
  58. Oishi, M., Okuda, H., and Wickramasinghe, N. C.: 1978, ‘Infrared Observation of Comet West 1975. II. A Model of Cometary Dust’,Publ. Astron. Soc. Japan 30, 161–172.Google Scholar
  59. Ozrin, V. D.: 1992, ‘Exact Solution for Coherent Backscattering of Polarized Light from Random Medium of Rayleigh Scatterers’,Waves in Random Media 2, 141–164.Google Scholar
  60. Peltoniemi, J. and Lumme, K.: 1992, ‘Light Scattering by Closely Packed Particulate Media’,J. Opt., Soc. Amer. A9(8), 1320–1326.Google Scholar
  61. Peltoniemi, J., Lumme, K., and Muinonen K.: 1990, ‘Scattering of Light by Stochastically Rough Particles with Applications to Interplanetary Regoliths’,Adv. Space Res. 10, (3)185-(3)188.Google Scholar
  62. Peltoniemi, J., Lumme, K., Muinonen, K., and Irvine, W. M.: 1989, ‘Scattering of Light by Stochastically Rough Particles’,Appl. Opt. 28, 4088–4095.Google Scholar
  63. Peters, K.: 1992, ‘Coherent-Backscatter Effect: A Vector Formulation Accounting for Polarization and Absorption Effects and Small or Large Scatterers’,Phys. Rev. B46(2), 801–812.Google Scholar
  64. Provostaye, F. and Desain, P.: 1852, ‘Mémoire sur la diffusion de la chaleur’,Ann. Chim. Phys. 3, 320.Google Scholar
  65. Rosenberg, G. V.: 1956, ‘On Reflectance Properties of Colored Turbid Media’, inCollected Articles Devoted to Academician P. P. Lazarev's Memory, Academy of Sciences of USSR Press, Moscow,Google Scholar
  66. Savornin, J.: 1939, ‘Etude de la diffraction eloignée’,Ann. de Physique 11, 129–255.Google Scholar
  67. Shkuratov, Yu. G.: 1982, ‘A Model for the Negative Polarization of Light Scattered by Cosmic Bodies Deprived of Atmospheres’,Astronomicheskiu Zhurnal 59, 817–822 (in Russian).Google Scholar
  68. Shkuratov, Yu. G.: 1985, ‘On the Opposition Brightness Surge and Light Negative Polarization of Solid Cosmic Surfaces’,Astronomicheskiy Circ. 1400, 3–6 (in Russian).Google Scholar
  69. Shkuratov, Yu. G.: 1987, ‘Negative Polarization of Sunlight Scattered from Celestial Bodies: Interpretation of the Wavelength Dependence’,Sov. Astron. Lett. 13, 182–183.Google Scholar
  70. Shkuratov, Yu. G.: 1988a, ‘Diffraction Model of the Brightness Surge of Surfaces Having Complex Structures’,Kinematika i Fizika Nebesnykh Tel 4, 33–38 (in Russian).Google Scholar
  71. Shkuratov, Yu. G.: 1988b, ‘On Polarimetric Inhomogeneity in the Surface of Asteroid (4) Vesta’,Astronomicheskiy Vestnik 22, 152–158 (in Russian).Google Scholar
  72. Shkuratov, Yu. G.: 1989a, ‘Interference Mechanism of Opposition Spike and Negative Polarization of Atmosphereless Planetary Bodies’,Bull. Amer. Astron. Soc. 21, 1989.Google Scholar
  73. Shkuratov, Yu. G.: 1989b, ‘New Mechanism of the Negative Polarization of Light Scattered by Atmosphereless Cosmic Bodies’,Astronomicheskiy Vestnik 23, 176–180 (in Russian).Google Scholar
  74. Shkuratov, Yu. G.: 1991, ‘Interference Model of the Negative Polarization of Light Scattered by the Solid Surfaces of Celestial Bodies’,Astronomicheskiy Vestnik 25, 152–161 (in Russian).Google Scholar
  75. Shkuratov, Yu. G. and Akimov, L. A.: 1987, ‘Laboratory Studies of the Negative Polarization of Light Scattered by Surfaces having Complex Structures. Some Sequences for Atmosphereless Cosmic bodies. 1″Kinematika i Fizika Nebesnykh Tel 3,22–27 (in Russian).Google Scholar
  76. Shkuratov, Yu. G., Akimov, L. A., Stankevich, N. P., Melkumova, L. Ya., Latynina, I. I., and Bogdanova, T. B.: 1987, ‘Laboratory Studies of the Negative Polarization of Light Scattered by Surfaces having Complex Structures. Some Sequences for Atmosphereless Cosmic Bodies. 2’,Kinematika i Fizika Nebesnykh Tel 3, 32–37 (in Russian).Google Scholar
  77. Shkuratov, Yu. G., Akimov, L. A., and Tishkovets, V. P.: 1984, ‘Negative Polarization Does not Imply a Dusty Asteroid Surface’,Soviet Astron. Lett. 10, 331–332.Google Scholar
  78. Shkuratov, Yu. G., Kreslavsky, M. A., and Opanasenko, N. V.: 1992b, ‘ Analysis of McCoyd's Mechanism of the Negative Polarization of Light Scattered by Atmosphereless Celestial Bodies’,Astronomicheskiy Vestnik 26, 45–53 (in Russian).Google Scholar
  79. Shkuratov, Yu. G. and Melkumova, L. Ya.: 1986, ‘On a Possible Feature of the Polarization of Moonlight’,Astronomicheskiy Circ. 1447, 5–7 (in Russian).Google Scholar
  80. Shkuratov, Yu. G., and Melkumova, L. Ya.: 1991, ‘Diffraction Model of the Negative Polarization of Light Scattered by Atmosphereless Cosmic Bodies’,Lun. & Plan. Sci. Conf. 22 [Abstract], 1243–1244.Google Scholar
  81. Shkuratov, Yu. G., Melkumova, L. A., and Badukov, D. D.: 1988a, ‘Laboratory Studies of the Negative Polarization of Light Scattered by Surfaces Having Complex Structures. Some Sequences for Atmosphereless Cosmic Bodies. 3’,Kinematika i Fizika Nebesnykh Tel 4, 11–18 (in Russian).Google Scholar
  82. Shkuratov, Yu. G., and Muinonen, K.: 1992, ‘Interpreting Asteroid Photometry anal Polarimetry using a Model of Shadowing and Coherent Backscattering’, in A. W. Harris and E. Bowell (eds.),Asteroids Comets, Meteors, Lunar and Planerary Institute, Houston, pp. 549–552.Google Scholar
  83. Shkuratov, Yu. G., Opanasenko, N. V., and Kreslavsky, M. A.: 1992a, ‘Polarimetric and Photometric Properties of the Moon: Telescope Observation and Laboratory Simulation. 1. The Negative Polarization’,Icarus 95, 282–299.Google Scholar
  84. Shkuratov, Yu. G., Opanasenko, N. V., and Melkumova, L. Ya.: 1988b,A Model of Negative Polarization of Light Scattered by Opaque Rough Surface. Institute of Radiophysics and Electronics, Ukrainian Academy of Sciences, Kharkov, Preprint No. 366, 18 (in Russian).Google Scholar
  85. Shkuratov, Yu. G., Opanasenko, N. V., and Melkumova, L. Ya.: 1989,Interference Surge of Backscattering and Negative Polarization of Light Reflected by Surfaces Having Complex Structures. Institute of Radiophysics and Electronics, Ukrainian Academy of Sciences, Kharkov, Preprint No. 361, 1–26 (in Russian)Google Scholar
  86. Sommerfeld, A.: 1953,Optics. IL Press, Moscow, 320 p. (in Russian).Google Scholar
  87. Steigmann, G. A.: 1978, ‘A Polarimetric Model for a Dust-Covered Planetary Surface’,Mon. Not. R. Astr. Soc. 185, 877–888.Google Scholar
  88. Steigmann, G. A.: 1984, ‘Application of a Polarimetric Model to the Surface Microstructure of Particles in the B-ring of Saturn’,Mon. Not. R. Astr. Soc. 209, 359–371.Google Scholar
  89. Steigmann, G. A.: 1986, ‘Optical Polarimetry of Sulfur and the Surface Microstructure of Io’,Mon. Not. R. Astr. Soc. 219, 823–833.Google Scholar
  90. Steigmann, G. A.: 1988a, ‘Optical Polarimetry and the Surface Microstructure of Airless Planetary Bodies. Part I: Astronomical Data’,J. Brit. Astron. Assoc. 98, 106–110.Google Scholar
  91. Steigmann, G. A.: 1988b, ‘Optical Polarimetry and the Surface Microstructure of Airless Planetary Bodies. Part III: Theoretical Models’,J. Brit. Astron. Assoc. 98, 205–208.Google Scholar
  92. Steigman, G. A. and Dodsworth, M. B.: 1987, ‘Surface Microstructure of the Nucleus of Comet P/Halley’,The Observatory 107, 263–267.Google Scholar
  93. Tishkovets, V. P. and Shkuratov, Yu. G.: 1982, ‘On the Polarization Properties of the Martian Surface and Atmosphere’,Astronomicheskiy Zhurnal 59, 991–995 (in Russian).Google Scholar
  94. Tsang, L. and Ishimaru, A.: 1984, ‘Backscattering Enhancement of Random Discrete Scatterers’,J. Opt. Soc. Amer. A1, 836–839.Google Scholar
  95. Tsang, L. and Ishimaru, A.: 1985, ‘Radiative Wave and Cyclical Transfer Equations for Dense Nontenuous Media’,J. Opt. Soc. Amer. A12, 2187–2193.Google Scholar
  96. Ufimtsev, P. Ya.: 1962,Border Waves Methods in Physical Theory of Diffraction. Radiotekhnika, Moscow, pp. 240 (in Russian).Google Scholar
  97. Vasil'ev, E. N. and Solodukhov, V. V.: 1974, ‘Diffraction of Electromagnetic Waves by a Dielectric Wedge’,Izvestija VUZov. Radiofizika 17, 1518–1528 (in Russian).Google Scholar
  98. Veverka, J.: 1977a, ‘Photometry of Satellite Surfaces’, in J. A. Burns (ed.),Planetary Satellites, Univ. of Arizona Press, Tucson, pp. 169–209.Google Scholar
  99. Veverka 1977b, ‘Polarimetry of Satellite Surfaces’, in J. A. Burns (ed.),Planetary Satellites, Univ. of Arizona Press, Tucson, pp. 210–231.Google Scholar
  100. Vinogradov, A. G., Kravtsov, Yu. A., and Tatarski, V. I.: 1973, ‘Effect of Backscattering for Bodies Placed in Media Containing Random Inhomogeneities’,Izvestija VUZov. Radiofizika 16, 1064 (in Russian).Google Scholar
  101. Wolf, D.: 1971, ‘Electromagnetic Reflection from an Extended Turbulent Medium: Cumulative Forward-Scatter Single-Backscatter Approximation’,IEEE Trans. AP-19, 254–282.Google Scholar
  102. Wolff, M.: 1975, ‘The Polarization of Light Reflected by Rough Planetary Surfaces’,Appl. Opt. 14, 1395–1404.Google Scholar
  103. Wolff, M.: 1980, ‘Theory and Application of the Polarization-Albedo Rules’,Icarus 44, 780–792.Google Scholar
  104. Wolff, M.: 1981, ‘Computing Diffuse Reflection from Particulate Planetary Surfaces with a New Function’,Appl. Opt. 20, 2429–2498.Google Scholar
  105. Wolff, M. and Dollfus, A.: 1990, ‘Calculating Rayleigh Scattering from Particulate Surfaces and Saturn's Rings’,Appl. Opt. 29(10), 1496–1502.Google Scholar
  106. Wolfsohn, G.: 1928, ‘Strenge theorie der interferenz und beugung 7’,in H. Geiger and K. Scheel (eds.),Handbuch der Physik, Springer Verlag, Berlin, pp. 263–316.Google Scholar
  107. Zellner, B., Leake, M., Lebertre, T., Duseaux, M., and Dollfus, A.: 1977a, ‘The Asteroid Albedo Scale. I. Laboratory Polarimetry of Meteorites’,Proc. 8th Lunar Sci. Conf, Geochim. Cosmochim. Acta Suppl. 8 3, 1091–1110.Google Scholar
  108. Zellner, B., Lebertre, T., and Day, K.: 1977b, ‘The Asteroid Albedo Scale. II. Laboratory Polarimetry of Dark Carbon-Bearing Silicates’,Proc. 8th Lunar Sci. Conf., Geochim. Cosmochim. Acta Suppl. 8 3, 1111–1117.Google Scholar
  109. Zerull, R. H. and Giese, R. H.: 1982, ‘The Significance of Polarization and Color Effects for Models of Cometary Grains’, in T. Gombosi (ed.),Cometary Exploration. II, Budapest, pp. 143–152.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Yu. G. Shkuratov
    • 1
  • K. Muinonen
    • 2
  • E. Bowell
    • 3
  • K. Lumme
    • 2
  • J. I. Peltoniemi
    • 2
  • M. A. Kreslavsky
    • 1
  • D. G. Stankevich
    • 1
  • V. P. Tishkovetz
    • 1
  • N. V. Opanasenko
    • 1
  • L. Y. Melkumova
    • 4
  1. 1.Astronomical Observatory of Kharkov State UniversityKharkovUkraine
  2. 2.ObservatoryUniversity of HelsinkiFinland
  3. 3.Lowell ObservatoryFlagstaffU.S.A.
  4. 4.Radiophysics and Electronics Institute of Ukrainian Academy of SciencesKharkovUkraine

Personalised recommendations