The moon

, Volume 16, Issue 4, pp 389–423 | Cite as

Basaltic magmatism and the bulk composition of the moon

I.Major and Heat-Producing Elements
  • A. E. Ringwood


The lunar interior is comprised of two major petrological provinces: (1) an outer zone several hundred km thick which experienced partial melting and crystallization differentiation 4.4–4.6 b.y. ago to form the lunar crust together with an underlying complementary zone of ultramafic cumulates and residua, and (2) the primordial deep interior which was the source region for mare basalts (3.2–3.8 b.y.) and had previously been contaminated to varying degrees with highly fractionated material derived from the 4.4–4.6 b.y. differentiation event. In both major petrologic provinces, basaltic magmas have been produced by partial melting. The chemical characteristics and high-pressure phase relationships of these magmas can be used to constrain the bulk compositions of their respective source regions.

Primitive low-Ti mare basalts (e.g., 12009, 12002, 15555 and Green Glass) possessing high normative olivine and high Mg and Cr contents, provide the most direct evidence upon the composition of the primordial deep lunar interior. This composition, as estimated on the basis of high pressure equilibria displayed by the above basalts, combined with other geochemical criteria, is found to consist of orthopyroxene + clinopyroxene + olivine with total pyroxenes > olivine, 100 MgO/(MgO + FeO) = 75–80, about 4% of CaO and Al2O3 and 2× chondritic abundances of REE, U and Th. This composition is similar to that of the earth's mantle except for a higher pyroxene/olivine ratio and lower 100 MgO/(MgO + FeO).

The lunar crust is believed to have formed by plagioclase elutriation within a vast ocean of parental basaltic magma. The composition of the latter is found experimentally by removing liquidus plagioclase from the observed mean upper crust (gabbroic anorthosite) composition, until the resulting composition becomes multiply saturated with plagioclase and a ferromagnesian phase (olivine). This parental basaltic composition is almost identical with terrestrial oceanic tholeiites, except for partial depletion in the two most volatile components, Na2 and SiO2. Similarity between these two most abundant classes of lunar and terrestrial basaltic magmas strongly implies corresponding similarities between their source regions. The bulk composition of the outer 400 km of the Moon as constrained by the 4.6-4.4 b.y. parental basaltic magma is found to be peridotitic, with olivine > pyroxene, 100 MgO/ (MgO + FeO) ∼ 86, and about 2× chondritic abundances of Ca, Al and REE. The Moon thus appears to have a zoned structure, with the deep interior (below 400 km) possessing somewhat higher contents of FeO and SiO2 than the outer 400 km. This zoned model, derived exclusively on petrological grounds, provides a quantitative explanation of the Moon's mean density, moment of inertia and seismic velocity profile.

The bulk composition of the entire Moon, thus obtained, is very similar to the pyrolite model composition for the Earth's mantle, except that the Moon is depleted in Na (and other volatile elements) and somewhat enriched in iron. The similarity in major element composition extends also to the abundances of REE, U and Th. These compositional similarities, combined with the identity in oxygen isotope ratios between the Moon and the Earth's mantle, are strongly suggestive of a common genetic relationship.


Olivine Bulk Composition Basaltic Magma Mare Basalt Lunar Crust 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, I., Trombka, J., Schmadebeck, R., Lowman, P., Blodget, N., Yin, L., and Eller, E.: 1973, ‘Results of the Apollo 15 and 16 X-ray Experiment’,Proc. Lunar Sci. Conf. 4th, 2783–2791.Google Scholar
  2. Anderson, A. T., Jr.: 1971, ‘Exotic Armalcolite and the Origin of Apollo 11 Ilmenite Basalts’,Geochim. Cosmochim. Acta 35, 969–973.Google Scholar
  3. Anderson, D. L.: 1973, ‘The Composition and Origin of the Moon’,Earth Planet. Sci. Letters 18, 301–316.Google Scholar
  4. Biggar, G. M., O'Hara, M. J., Peckett, A., and Humphries, D. J.: 1971, ‘Lunar Lavas and the Achondrites: Petrogenesis of Protohypersthene Basalts in the Maria Lava Lakes’,Proc. Lunar Sci. Conf. 2nd, 617–643.Google Scholar
  5. Brett, R.: 1977, ‘The Case against Early Melting of the Bulk of the Moon’,Geochim. Cosmochim. Acta, in press.Google Scholar
  6. Bunch, T. E., Keil, K., and Prinz, M.: 1972a, ‘Mineralogy, Petrology and Chemistry of Lunar Rock 12039’,Meteorites 7, 245–256.Google Scholar
  7. Bunch, T. E., Quaide, W., Prinz, M., Keil, K., and Dowty, E.: 1972b, Lunar Ultramafic Glasses, Chondrules and Rocks',Nature Phys. Sci. 239, 57–59.Google Scholar
  8. Boyce, J. M., Dial, A. L., and Soderblom, L. A.: 1974, ‘Ages of the Lunar Nearside Light Plains and Maria’,Proc. Lunar Sci. Conf. 5th, 11–23.Google Scholar
  9. Chao, E. C. T., Hodges, C. A., Boyce, J. M., and Soderblom, L. A.: 1975, ‘Origin of Lunar Light Plains’,J. Res. U.S. Geol. Survey 3, 379–392.Google Scholar
  10. Chappell, B. W. and Green, D. H.: 1973, ‘Chemical Composition and Petrogenetic Relationships in Apollo 15 Mare Basalts’,Earth Planet. Sci. Letters 18, 237–246.Google Scholar
  11. Church, S. E.: 1972, ‘The Distribution of K, Ti, Zr, U and Hf in Apollo 14 and 15 Materials’, in J. Chamberlain and C. Watkins (eds.),The Apollo 15 Lunar Samples 210–211. The Lunar Science Institute, Houston, Texas.Google Scholar
  12. Clayton, R. N., Grossman, L., and Mayeda, T. K.: 1973, ‘A Composition of Primitive Nuclear Composition in Carbonaceous Meteorites’,Science 182, 485–488.Google Scholar
  13. Clayton, R. N., Onuma, N., and Mayeda, T.: ‘A Classification of Meteorites Based on Oxygen Isotopes’,Earth Planet. Sci. Letters 30, 10–18.Google Scholar
  14. Conel, J. E. and Morton, J. B.: 1975, ‘Interpretation of Lunar Heat Flow Data’,The Moon 14, 263–289.Google Scholar
  15. Compston, W., Berry, H., Vernon, M. J., Chappell, B. W., and Kaye, M. J.: 1971, ‘Rb-Sr Chronology and Chemistry of Lunar Material from the Ocean of Storms’,Proc. Lunar Sci. Conf. 2nd, 1471–1485.Google Scholar
  16. Dainty, A. M., Toksöz, M. N., Solomon, S. C., Anderson, K. R., and Goins, N. R.: 1974, ‘Constraints on Lunar Structure’,Proc. Lunar Sci. Conf. 5th, 3091–3114.Google Scholar
  17. Frey, F. A. and Green, D. H.: 1974, ‘The Mineralogy, Geochemistry and Origin of Lherzolite Inclusions in Victorian Basanites’,Geochim. Cosmochim. Acta 38, 1023–1059.Google Scholar
  18. Frey, F. A., Bryan, W. B., and Thompson, G.: 1974, Atlantic Ocean Floor: Geochemistry and Petrology of Basalts from Legs 2 and 3 of the Deep-sea Drilling Project’,J. Geophys. Res. 79, 5507–5528.Google Scholar
  19. Ganapathy, R. and Anders, E.: 1974, ‘Bulk Compositions of the Moon and Earth, Estimated from Meteorites’,Proc. Lunar Sci. Conf. 5th, 1181–1206.Google Scholar
  20. Gast, P. W.: 1968, ‘Trace Element Fractionation and the Origin of Tholeiitic and Alkaline Magma Types’,Geochim. Cosmochim. Acta 32, 1052–1086.Google Scholar
  21. Gast, P. W.: 1972, ‘The Chemical Composition and Structure of the Moon’,The Moon 5, 121–148.Google Scholar
  22. Gast, P. W., Hubbard, N. L., and Wiesman, H.: 1970, ‘Chemical Composition and Petrogenesis of Basalts from Tranquillity Base’,Proc. Apollo 11 Lunar Sci. Conf. 1143–1164.Google Scholar
  23. Green, D. H.: 1970, ‘The Origin of Basaltic and Nephelinitic Magmas’,Trans. Leicester Lit. Phil. Soc. 44, 26–54.Google Scholar
  24. Green, D. H.: 1975, ‘Genesis of Archean Peridotitic Magmas and Constraints on Archean Geothermal Gradients and Tectonics’,Geology 3, 15–18.Google Scholar
  25. Green, D. H.: 1976, ‘Orthopyroxene in the Lunar Interior and Constraints on Early Lunar Differentiation (abstract)’, inLunar Science VII, 336–338. The Lunar Science Institute, Houston, Texas.Google Scholar
  26. Green, D. H. and Ringwood, A. E.: 1967, ‘The Genesis of Basaltic Magmas’,Contrib. Mineral. Petrol. 15, 103–190.Google Scholar
  27. Green, D. H. and Ringwood, A. E.: 1973, ‘Significance of a Primitive Lunar Basaltic Composition Present in Apollo 15 Soils and Breccias’,Earth Planet. Sci. Letters 19, 1–8.Google Scholar
  28. Green, D. H., Ringwood, A. E., Ware, N. G., Hibberson, W. O., Major, A., and Kiss, E.: 1971a, ‘Experimental Petrology and Petrogenesis of Apollo 12 Basalts’,Proc. Lunar Sci. Conf, 2nd, 601–615.Google Scholar
  29. Green, D. H., Ware, N. G., Hibberson, W. O., and Major, A.: 1971b, ‘Experimental Petrology of Apollo 12 Basalts’, Part I, sample 12009.Earth Planet. Sci. Letters 13, 85–96.Google Scholar
  30. Green, D. H., Ringwood, A. E., Hibberson, W. O., and Ware, N. G.: 1975, ‘Experimental Petrology of Apollo 17 Mare Basalts’,Proc. Lunar Sci. Conf. 6th, 871–893.Google Scholar
  31. Grossman, L. A.: 1972, ‘Condensation in the Primitive Solar Nebula’,Geochim. Cosmochim. Acta 36, 597–619.Google Scholar
  32. Grove, T. L., Walker, D., Longhi, J., Stolper, E., and Hays, J. F.: 1973, Petrology of Rock 12002 and Origin of Picritic Basalts at Oceanus Procellarum’,Proc. Lunar Sci. Conf. 4th, 995–1011.Google Scholar
  33. Haskin, L. A., Allen, R. O., Helmke, P. A., Paster, T. P., Anderson, M. R., Korotev, R. L., and Zweifel, K. A.: 1970, REE and Other Trace Elements in Apollo 11 Samples',Proc. Apollo 11 Lunar Sci. Conf. 1213–1231.Google Scholar
  34. Haskin, L. A., Helmke, P. A., Allen, R. O., Anderson, M. R., Korotev, R. L., and Zweifel, K. A.: 1971, ‘Rare Earth Elements in Apollo 12 Lunar Materials’,Proc. Lunar Sci. Conf. 2nd, 1307–1318.Google Scholar
  35. Head, J. W., Settle, M., and Stein, R.: 1975, ‘Volume of Material Ejected from Major Lunar Basins: Implications for the Depth of Excavation of Lunar Samples (abstract)’, inLunar Science VI, 352–354. The Lunar Science Institute, Houston, Texas.Google Scholar
  36. Helmke, P. A., Haskin, L. A., Korotev, R. Y., and Zeige, K. E.: 1972, ‘Rare Earths and Other Trace Elements in Apollo 14 Samples’,Proc. Lunar Sci. Conf. 3rd, 1275–1292.Google Scholar
  37. Helmke, P. A., Blanchard, D., Haskin, L., Telander, K., Weiss, C., and Jacobs, J.: 1973, ‘Major and Trace Elements in Igneous Rocks from Apollo 15’,The Moon 8, 129–148.Google Scholar
  38. Hubbard, N. F. and Gast, P. W.: 1971, ‘Chemical Composition and Origin of Nonmare Lunar Basalts’,Proc. Lunar Sci. Conf. 2nd, 999–1020.Google Scholar
  39. Hubbard, N. L. and Minear, J. W.: 1975, ‘A Chemical and Physical Model for the Genesis of Lunar Rocks: Part II. Mare Basalts (abstract)’, inLunar Science VI, 405–407. The Lunar Science Institute, Houston, Texas.Google Scholar
  40. Hubbard, N. L., Gast, P. W., Meyer, C., Nyquist, L. E., and Shih, C.: 1971, ‘Chemical Composition of Lunar Anorthosites and their Parent Liquids’,Earth Planet. Sci. Letters 13, 71–75.Google Scholar
  41. Hunecke, J. C., Jessberger, E. K., and Wasserburg, G.: 1974, ‘The Age of Metamorphism of a Highland Breccia (65015) and a Glimpse at the Age of its Protolith’, inLunar Science V, 375–377. The Lunar Science Institute, Houston, Texas.Google Scholar
  42. Jackson, E. D.: 1967. in P. J. Wyllie (ed.),Ultramafic and Related Rocks, pp. 20–38. Wiley and Sons, New York,466 p.Google Scholar
  43. James, O. B. and Jackson, E. D.: 1970, ‘Petrology of the Apollo 11 Ilmenite Basalts’,J. Geophys. Res. 75, 5793–5824.Google Scholar
  44. James, O. B. and Wright, T. L.: 1972, ‘Apollo 11 and 12 Mare Basalts and Gabbros: Classification, Compositional Variation and Possible Petrogenetic Relations’,Bull. Geol. Soc. Amer. 83, 2357–2382.Google Scholar
  45. Kaula, W. M.: 1969, ‘Interpretation of Lunar Mass Concentrations’,Phys. Earth Planet. Interiors 2, 123–137.Google Scholar
  46. Kaula, W. M., Schubert, G., Lingfelter, R. E., Sjogren, W. L., and Wollenhaupt, W. R.: 1974, ‘Apollo Laser Altimetry and Inferences as to Lunar Structure’,Proc. Lunar Sci. Conf. 5th, 2069–3058.Google Scholar
  47. Kesson, S. E.: 1975, ‘Mare Basalts: Melting Experiments and Petrogenetic Interpretations’,Proc. Lunar Sci. Conf. 6th, 921–924.Google Scholar
  48. Kesson, S. E. and Ringwood, A. E.: 1976a, ‘Mare Basalt Petrogenesis in a Dynamic Moon’,Earth Planet. Sci. Letters 30, 155–163.Google Scholar
  49. Kesson, S. E. and Ringwood, A. E.: 1976b, ‘Further Limits on the Bulk Composition of the Moon’, in preparation.Google Scholar
  50. Kesson, S. E. and Ringwood, A. E.: 1976c, unpublished experimental data.Google Scholar
  51. Kushiro, I.: 1972, ‘Petrology of Some Apollo 15 Mare Basalts’, in J. Chamberlain and C. Watkins (eds.),The Apollo 15 Lunar Samples 128–130. The Lunar Science Institute, Houston, Texas.Google Scholar
  52. Kushiro, I. and Haramura, H.: 1971, ‘Major Element Variation and Possible Source Materials of Apollo 12 Crystalline Rocks’,Science 171, 1235–1237.Google Scholar
  53. Langseth, M. G., Clark, S. P., Chute, J. L., Keihm, S. J., and Wechsler, A. E.: 1972, ‘The Apollo 15 Lunar Heat-flow Measurement’,The Moon 4, 390–410.Google Scholar
  54. Langseth, M. G., Keihm, S. J., and Chute, J. L.: 1973, ‘Heat Flow Experiment’,NASA Spec. Publ. SP-330. Google Scholar
  55. Langseth, M. G., Keihm, S. J., and Peters, K.: 1976a, ‘The Revised Lunar Heat Flow Values (abstract)’, inLunar Science VII, 474–476. The Lunar Science Institute, Houston, Texas.Google Scholar
  56. Langseth, M. G., Keihm, S. J., and Peters, K.: 1976b, ‘Revised Lunar Heat Flow Values’,Proc. Lunar Sci. Conf. 7th, 3143–3171.Google Scholar
  57. Latham, G., Nakamura, Y., Duennebier, F., Dorman, J., and Lammlein, D.: 1975, ‘Passive Seismic Experiment. Progress Report on Lunar Seismology’. Preprint.Google Scholar
  58. Laul, J. C., Hill, D. W., and Schmitt, R. A.: 1974, ‘Chemical Studies of Apollo 16 and 17 Samples’,Proc. Lunar Sci. Conf. 5th, 1047–1066.Google Scholar
  59. Liebermann, R. C. and Ringwood, A. E.: 1976, ‘Elastic Properties of Anorthite and the Nature of the Lunar Crust’,Earth Planet. Sci. Letters 31, 69–74.Google Scholar
  60. Longhi, J., Walker, D., Stolper, E. N., Grove, T. L., and Hays, J. F.: 1972, ‘Petrology of Mare/rille Basalts 15555 and 15065’, inThe Apollo 15 Lunar Samples, 131–134. Lunar Science Institute, Houston, Texas.Google Scholar
  61. Longhi, J., Walker, D., Grove, T., Stolper, E., and Hays, J.: 1974, ‘The Petrology of the Apollo 17 Mare Basalts’,Proc. Lunar Sci. Conf. 5th, 447–469.Google Scholar
  62. Loubet, M., Shimizu, N., and Allegre, C. J.: 1975, ‘Rare Earth Elements in Alpine Peridotites’,Contrib. Mineral. Petrol. 53, 1–12.Google Scholar
  63. LSAPT (Lunar Sample Analysis Planning Team): 1970, ‘Summary of Apollo 11 Lunar Science Conference’,Science 167, 449–451.Google Scholar
  64. Lugmair, G. W., Scheinin, N. B., and Marti, K.: 1975, ‘Sm-Nd Age of Apollo 17 Basalt 75075: Twostage Igneous Process in Mare Basalt Genesis (abstract)’, inLunar Science VI, 531–533. The Lunar Science Institute, Houston, Texas.Google Scholar
  65. MacDonald, G. J. F.: 1959, ‘Calculations on the Thermal History of the Earth’,J. Geophys. Res. 64, 1967–2000.Google Scholar
  66. MacDonald, G. J. F.: 1965, ‘Terrestrial Heat Flow’, in W. H. Lee (ed.),Amer. Geophys. Union Mon. 8, 191–210. Nat. Acad. Sci.-Nat. Res. Council Publ. 1288.Google Scholar
  67. McCallum, I. S., Okamura, F. P., and Ghose, S.: 1975, ‘Mineralogy and Petrology of Sample 67075 and the Origin of Lunar Anorthosites’,Earth Planet. Sci. Letters 20, 36–53.Google Scholar
  68. Metzger, A. E., Trombka, J., Reedy, R., and Arnold, J.: 1974, ‘Element Concentrations from Lunar Orbital Gamma Ray Experiments’,Proc. Lunar Sci. Conf. 5th, 1067–1078.Google Scholar
  69. Morgan, J. W.: 1971, ‘Uranium’, in B. Mason (ed.),Handbook of Elemental Abundances in Meteorites, pp. 529–548. Gordon and Breach, New York, 555 p.Google Scholar
  70. Nakamura, Y., Latham, G., Lammlein, D., Ewing, M., Duennebier, F., and Dorman, J.: 1974, ‘Deep Lunar Interior Inferred from Recent Seismic Data’,Geophys. Res. Letters 1, 137–140.Google Scholar
  71. Nesbitt, B. W. and Sun, S. S.: 1976, ‘Geochemistry of Archean Spinifex-textured Peridotites and Magnesian and Low-magnesian Tholeiites’,Earth Planet. Sci. Letters 31, 433–453.Google Scholar
  72. Newton, R. C., Anderson, A. T., and Smith, J. V.: 1971, ‘Accumulation of Olivine in Rock 12040 and Other Basaltic Fragments in the Light of Analysis and Syntheses’,Proc. Lunar Sci. Conf. 2nd, 575–582.Google Scholar
  73. O'Hara, M. J., Biggar, G. M., Richardson, S. W., Ford, C. E., and Jamieson, B. G.: 1970a, ‘The Nature of Seas, Mascons and the Lunar Interior in the Light of Experimental Studies’,Proc. Apollo 11 Lunar Sci. Conf. 695–710.Google Scholar
  74. O'Hara, M. J., Biggar, G. M., and Richardson, S. W.: 1970b, ‘Experimental Petrology of Lunar Material: The Nature of Mascons, Seas and the Lunar Interior’,Science 167, 605–607.Google Scholar
  75. Papike, T. S., Hodges, F. N., Bence, A. E., Cameron, M., and Rhodes, J. M.: 1976, ‘Mare Basalts: Crystal Chemistry, Mineralogy and Petrology’,Rev. Geophys. Space Phys. 14, 475–540.Google Scholar
  76. Philpotts, J. A. and Schnetzler, C. C.: 1970, ‘Apollo 11 Lunar Samples: K, Rb, Sr, Ba and REE Concentrations in Some Rocks and Separated Phases’,Proc. Apollo 11 Lunar Sci. Conf., 1471–1492.Google Scholar
  77. Philpotts, J., Schnetzler, C., Bottino, M., Schumann, S., and Thomas, H.: 1972, ‘Luna 16: Some Li, K, Rb, Sr, Ba, REE, Zr and Hf concentrations’,Earth Planet. Sci. Letters 13, 629–635.Google Scholar
  78. Rhodes, J. M. and Hubbard, N. L.: 1973, ‘Chemistry Classification and Petrogenesis of Apollo 15 Mare Basalts’,Proc. Lunar Sci. Conf. 4th, 1127–1148.Google Scholar
  79. Ridley, W. E., Reid, A. M., Warner, J. L., and Brown, R. W.: 1973, ‘Apollo 15 Green Glasses’,Phys. Earth Planet. Interiors 7, 133–136.Google Scholar
  80. Ringwood, A. E.: 1966, ‘Chemical Evolution of the Terrestrial Planets’,Geochim. Cosmochim. Acta 30, 41–104.Google Scholar
  81. Ringwood, A. E.: 1970, ‘Petrogenesis of Apollo 11 Basalts and Implications for Lunar Origin’,J. Geophys. Res. 75, 6453–6479.Google Scholar
  82. Ringwood, A. E.: 1975a,Composition and Petrology of the Earth's Mantle, McGraw-Hill, New York, 618 p.Google Scholar
  83. Ringwood, A. E.: 1975b, ‘Some Aspects of the Minor Element Chemistry of Lunar Mare Basalts’,The Moon 12, 127–157.Google Scholar
  84. Ringwood, A. E.: 1976a, ‘Limits on the Bulk Composition of the Moon’,Icarus 28, 325–349.Google Scholar
  85. Ringwood, A. E.: 1976b, ‘Mare Basalt Petrogenesis and the Composition of the Lunar Interior’, in K. Runcorn (ed.),The Moon - A New Appraisal from Space Missions and Laboratory Analysis, The Royal Society, June 1975. In press.Google Scholar
  86. Ringwood, A. E. and Essene, E.: 1970a, ‘Petrogenesis of Lunar Basalts and the Internal Constitution and Origin of the Moon’,Science 167, 607–610.Google Scholar
  87. Ringwood, A. E. and Essene, E.: 1970b, ‘Petrogenesis of Apollo 11 Basalts, Internal Constitution and Origin of the Moon’,Proc. Apollo 11 Lunar Sci. Conf. 769–799.Google Scholar
  88. Ringwood, A. E. and Green, D. H.: 1972, ‘Crystallization of Plagioclase in Lunar Basalts and its Significance’,Earth Planet. Sci. Letters 14, 14–18.Google Scholar
  89. Ringwood, A. E. and Kesson, S. E.: 1976a, ‘A Dynamic Model for Mare Basalt Petrogenesis’,Proc. Lunar Sci. Conf. 7th, 1697–1722.Google Scholar
  90. Ringwood, A. E. and Kesson, S. E.: 1976b, ‘Further Limits on the Bulk Composition of the Moon’, inLunar Science VII, 741–743. The Lunar Science Institute, Houston, Texas.Google Scholar
  91. Schnetzler, C. C. and Philpotts, J. A.: 1971, ‘Alkali, Alkaline Earth and Rare Earth Element Concentrations in Some Apollo 12 Soils, Rocks and Separated Phases’,Proc. Lunar Sci. Conf. 2nd, 1101–1122.Google Scholar
  92. Schonfeld, G.: 1975, ‘A Model for the Lunar Anorthositic Gabbro’,Proc. Lunar Sci. Conf. 6th, 1375–1386.Google Scholar
  93. Shih, C., Haskin, L. A., Wiesmann, H., Bansal, B. M., and Brannon, J. C.: 1975, ‘On the Origin of High-Ti Mare Basalts’,Proc. Lunar Sci. Conf. 6th, 1255–1285.Google Scholar
  94. Sun, S. S. and Nesbitt, B. W.: 1976, ‘Petrogenesis of Archaean Ultrabasic and Basic Volcanics and Mantle Evolution: Evidence from Rare Earth Elements’, in preparation.Google Scholar
  95. Taylor, H. P., Duke, M. B., Silver, L. T., and Epstein, S.: 1965, ‘Oxygen Isotope Studies of Minerals in Stony Meteorites’,Geochim. Cosmochim. Acta 29, 489–512.Google Scholar
  96. Taylor, S. R.: 1973a, ‘Geochemistry of the Lunar Highlands’,The Moon 7, 181–195.Google Scholar
  97. Taylor, S. R.: 1973b, ‘Chemical Evidence for Lunar Melting and Differentiation’,Nature 245, 203–205.Google Scholar
  98. Taylor, S. R. and Bence, A. E.: 1975, ‘Evolution of the Lunar Highlands Crust’,Proc. Lunar Sci. Conf. 6th, 1121–1142.Google Scholar
  99. Taylor, S. R. and Jakeš, P.: 1974, ‘The Geochemical Evolution of the Moon’,Proc. Lunar Sci. Conf. 5th, 1287–1305.Google Scholar
  100. Tera, F. and Wasserburg, G. J.: 1975, ‘The Evolution and History of Mare Basalts as inferred from U-Th-Pb Systematics (abstract)’, inLunar Science VI, 807–809. The Lunar Science Institute, Houston.Google Scholar
  101. Toksöz, M. N., Dainty, A. M., Solomon, S. C. and Anderson, K. R.: 1974, ‘Structure of the Moon’,Rev. Geophys. Space Phys. 12, 539–567.Google Scholar
  102. Toksöz, M. N., Hsui, A. T. and Johnstone, D.: 1976, ‘Evolution of the Moon Revisited’, inLunar Science VII, 867–869. The Lunar Science Institute, Houston.Google Scholar
  103. Urey, H. C.: 1962, ‘Origin and History of the Moon’, in Z. Kopal (ed.),Physics and Astronomy of the Moon, 481–523. Academic Press, New York.Google Scholar
  104. Walker, D., Longhi, J., Stolper, E. M., Grove, T. L., and Hays, J. F.: 1975a, ‘Origin of Titaniferous Lunar Basalts’,Geochim. Cosmochim. Acta 39, 1219–1236.Google Scholar
  105. Walker, D., Longhi, J., and Hays, J. F.: 1975b, ‘Differentiation of a Very Thick Magma Body and its Implications for the Source Region of Mare Basalts’,Proc. Lunar Sci. Conf. 6th, 1103–1120.Google Scholar
  106. Walker, D., Kirkpatrick, R. J., Longhi, J. and Hays, J. F.: 1976, ‘Crystallization History and Origin of Lunar Picritic Basalt 12002: Phase Equilibria, Cooling Rate Studies, and Physical Properties of the Parent Magma’,Geol. Soc. Amer. Bull. 87, 646–656.Google Scholar
  107. Wang, H., Todd, T., Richter, D., and Simmons, G.: 1973, ‘Elastic Properties of Plagioclase Aggregates’,Proc. Lunar Sci. Conf. 6th, 2663–2671.Google Scholar
  108. Wänke, H., Palme, K., Spettel, B., and Teschke, F.: 1972, ‘Multielement Analyses and a Comparison of the Degree of Oxidation of Lunar and Meteoritic Matter’, in J. Chamberlain and C, Watkins (eds.),The Apollo 15 Lunar Samples, 265–267. The Lunar Science Institute, Houston, Texas.Google Scholar
  109. Wänke, H., Palme, K., Baddenhausen, H., Dreibus, G., Jagoutz, E., Kruse, H., Spettel, B., Teschke, F., and Thacker, R.: 1974, ‘Chemistry of Apollo 16 and 17 Samples: Bulk Composition, Late Stage Accumulation and Early Differentiation of the Moon’,Proc. Lunar Sci. Conf. 5th, 1307–1335.Google Scholar
  110. Wänke, H., Palme, K., Baddenhausen, H., Dreibus, G., Jagoutz, E., Kruse, H., Spettel, B., Teschke, F., and Thacker, R.: 1975, ‘New Data on the Chemistry of Lunar Samples: Primary Matter in the Lunar Highlands and the Bulk Composition of the Moon’,Proc. Lunar Sci. Conf. 6th, 1313–1340.Google Scholar
  111. Willis, J. P., Erlank, A. J., Gurney, J. J., and Ahrens, L. H.: 1972, ‘Geochemical Features of Apollo 15 Materials’, in J. Chamberlain and C. Watkins (eds.),The Apollo 15 Lunar Samples, 268–271. The Lunar Science Institute, Houston, Texas.Google Scholar
  112. Wood, J. A.: 1970, ‘Petrology of the Lunar Soil and Geophysical Implications’,J. Geophys. Res. 32, 6497–6513.Google Scholar
  113. Wood, J. A.: 1972, ‘Early Matmatism in the Moon’,Icarus 16, 229–240.Google Scholar
  114. Wood, J. A.: 1975, ‘Lunar Petrogenesis in a Well-stirred Magma Ocean’,Proc. Lunar Sci. Conf. 6th, 1087–1102.Google Scholar

Copyright information

© D. Reidel Publishing Company 1977

Authors and Affiliations

  • A. E. Ringwood
    • 1
  1. 1.Research School of Earth SciencesAustralian National UniversityCanberraAustralia

Personalised recommendations