Advertisement

Quantitative analysis of cell types during growth and morphogenesis in Hydra

  • H. Bode
  • S. Berking
  • C. N. David
  • A. Gierer
  • H. Schaller
  • E. Trenkner
Article

Summary

Tissue maceration was used to determine the absolute number and the distribution of cell types in Hydra. It was shown that the total number of cells per animal as well as the distribution of cells vary depending on temperature, feeding conditions, and state of growth. During head and foot regeneration and during budding the first detectable change in the cell distribution is an increase in the number of nerve cells at the site of morphogenesis. These results and the finding that nerve cells are most concentrated in the head region, diminishing in density down the body column, are discussed in relation to tissue polarity.

Keywords

Quantitative Analysis Developmental Biology Absolute Number Detectable Change Nerve Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burnett, A. L.: The acquisition, maintenance and lability of the differentiated state in hydra. In: The stability of the differentiated state (H. Ursprung and W. Beermann, ed.). Berlin-Heidelberg-New York: Springer 1966.Google Scholar
  2. Campbell, R. D.: Tissue dynamics of steady state growth inHydra littoralis. Develop. Biol.15, 487–502 (1967).Google Scholar
  3. David, C. N.: Quantitative method for maceration of hydra tissue. Wilhelm Roux' Archiv,171, 259 (1972).Google Scholar
  4. Kanaev, J. J.: Hydra. Essays on the biology of fresh water polyps, originally published by Soviet Academy of Sciences, Moscow; ed. by H. M. Lenhoff (1952).Google Scholar
  5. Lentz, T. L.: The cell biology of hydra. Amsterdam: North-Holland Publ. Co. 1966.Google Scholar
  6. Loomis, W. F., Lenhoff, H. M.: Growth and sexual differentiation of hydra in mass culture. J. exp. Zool.132, 555–573 (1956).Google Scholar
  7. MacWilliams, H. K., Kafatos, F. C., Bossert, W. H.: The feedback inhibition of basal disk regeneration in Hydra has a continuously variable intensity. Develop. Biol.23, 380–398 (1970).Google Scholar
  8. Tardent, P.: Axiale Verteilungsgradienten der interstitiellen Zellen bei Hydra und Tubularia und ihre Bedeutung fÜr die Regeneration. Wilhelm Roux' Arch. Entwickl.-Mech. Org.146, 593–649 (1954).Google Scholar
  9. Tardent, P.: Regeneration in hydrozoa. Biol. Rev.38, 293–333 (1963).Google Scholar
  10. Webster, G.: Morphogenesis and pattern formation in hydroids. Biol. Rev.46, 1–46 (1971).Google Scholar
  11. Wolpert, L., Hicklin, J., Hornbruch, A.: Positional information and pattern regulation in regeneration of hydra. In: Control mechanisms of growth and differentiation. Symp. Soc. Exp. Biol. XXV. Cambridge: Cambridge University Press 1971.Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • H. Bode
    • 1
  • S. Berking
    • 1
  • C. N. David
    • 1
  • A. Gierer
    • 1
  • H. Schaller
    • 1
  • E. Trenkner
    • 1
  1. 1.Molekularbiologische AbteilungMax-Planck-Institut fÜr VirusforschungTÜbingenGermany

Personalised recommendations