Computational Mechanics

, Volume 8, Issue 4, pp 235–248 | Cite as

A simple and efficient solution method for the limit elasto-plastic analysis of plane frames

  • M. Papadrakakis
  • S. A. Karamanos


A solution method for the first order step-by-step limit analysis of plane frames is presented. The formulation of the governing equations is based on the ‘plastic node’ method and takes into account stress reversals and any type of yield conditions. The solution of the governing equilibrium equations in each step is obtained with the preconditioned conjugate gradient method. Special attention is paid to the fact that the overall stiffness matrix changes gradually with the successive formation of ‘plastic nodes’. A number of test problems have been performed which show the usefulness of the present approach. The results also reveal the superiority of this technique, in both storage requirements and computing time, with respect to efficient methods of solution.


Test Problem Solution Method Stiffness Matrix Conjugate Gradient Gradient Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ajiz, M. A.; Jennings, A. (1984): A robust incomplete Choleski conjugate gradient algorithm. Int. J. Numer. Meth. Eng. 20, 949–966Google Scholar
  2. Andreaus, U.; D'Asdia, P. (1988): An incremental procedure for deformation analysis of elastic-plastic frames. Int. J. Numer. Meth. Eng. 26, 769–784Google Scholar
  3. Argyris, J. H.; Boni, B.; Hindenlang, U.; Kleiber, M. (1982): Finite element analysis of two-and three-dimensional elasto-plastic frames. The natural approach. Comp. Meth. Appl. Mech. Eng. 35, 221–248Google Scholar
  4. Cichon, C. (1984): Large displacements in-plane analysis of elastic-plastic frames. Comp. Struct. 19, 737–745Google Scholar
  5. Chen, W. F.; Sugimoto, H. (1987): Analysis of tubular beam-columns and frames under reversed loading. Eng. Struct. 9, 233–242Google Scholar
  6. Cohn, M. Z.; Rafay, T. (1977): Deformations of plastic frames considering axial forces. J. Eng. Mech. Div., ASCE 103, 725–745Google Scholar
  7. Creus, G. J.; Torres, P. L.; Groehs, A. G. (1984): Elastoplastic frame analysis with generalized yield function and finite displacements. Comp. Struct. 18, 925–929Google Scholar
  8. El.Zenaty, H.; Murray, D. W. (1983): Nonlinear finite element analysis of steel frames. J. Struct. Eng. ASCE 109, 353–368Google Scholar
  9. Grierson, D. E.; Gladwell, G. M. L. (1971): Collapse load analysis using linear programming. J. Struct. Eng. 97, 1561–1573Google Scholar
  10. Grierson, D. E.; Abdel-Baset, S. B. (1977): Plastic analysis under combined stresses. J. Eng. Mech. Div., ASCE 103, 837–854Google Scholar
  11. Hilmy, S. I.; Abel, J. F. (1985): Material and geometric nonlinear dynamic analysis of steel frames using computer graphics. Comp. & Struct. 21, 825–840Google Scholar
  12. Horne, M. R. (1971): Plastic theory of structures. Cambridge. Mass.: The MIT PressGoogle Scholar
  13. Jennings, A.; Tam, T. K. H. (1986): Automatic plastic design of frames. Eng. Struct. 8, 139–147Google Scholar
  14. Kaneko, I.; Nappi, A. (1986): A basis decomposition linear programming approach to limit analysis. Eng. Analysis 3, 16–24Google Scholar
  15. Kassimali, A. (1983): Large deformation analysis of elastic-plastic frames. J. Struct. Eng. 109, 1869–1886Google Scholar
  16. Kondoh, K.; Atluri, S. N. (1987): Large deformation, elasto-plastic analysis of frames under nonconservative loading, using explicitly derived tangent stiffnesses based on assumed stresses. Comp. Mech. 2, 1–25Google Scholar
  17. Korn, A.; Galambos, T. V. (1968): Behavior of elastic-plastic frames. J. of Struct. Div.; ASCE 94, 1119–1142Google Scholar
  18. Korn, A. (1981): Effect of bowing on rectangular plane frames. J. of Struct. Div., ASCE 107, 569–574Google Scholar
  19. Powell, G. H.; Chen, P. F. S. (1986): 3D beam-column elements with generalized plastic hinges. J. Eng. Mech. Div. ASCE 112, 627–641Google Scholar
  20. Papadrakakis, M. (1986): Accelerating vector iteration methods. J. Appl. Mech., ASME 53, 291–297Google Scholar
  21. Papadrakakis, M.; Dra poulos, M. C. (1989): Improving the efficiency of preconditioning for iterative methods. Comp. Struct. (to be published.)Google Scholar
  22. Ueda, Y.; Yao, T. (1982): The plastic node method: A new method of plastic analysis. Comp. Meth. Appl. Mech. Eng. 34, 1089–1104Google Scholar
  23. Watwood, V. B. (1979): Mechanism generation for limit analysis of frames. J. of Struct. Div., ASCE 109, 1–15Google Scholar
  24. Yang, T. Y.; Saigal, S. (1984): A simple element for static and dynamic response of beams with material and geometric nonlinearities. Int. J. Num. Meth. Eng. 20, 851–867Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • M. Papadrakakis
    • 1
  • S. A. Karamanos
    • 1
  1. 1.Institute of Structural Analysis and Aseismic ResearchNational Technical UniversityAthensGreece

Personalised recommendations