Skip to main content
Log in

A simple and efficient solution method for the limit elasto-plastic analysis of plane frames

  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A solution method for the first order step-by-step limit analysis of plane frames is presented. The formulation of the governing equations is based on the ‘plastic node’ method and takes into account stress reversals and any type of yield conditions. The solution of the governing equilibrium equations in each step is obtained with the preconditioned conjugate gradient method. Special attention is paid to the fact that the overall stiffness matrix changes gradually with the successive formation of ‘plastic nodes’. A number of test problems have been performed which show the usefulness of the present approach. The results also reveal the superiority of this technique, in both storage requirements and computing time, with respect to efficient methods of solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ajiz, M. A.; Jennings, A. (1984): A robust incomplete Choleski conjugate gradient algorithm. Int. J. Numer. Meth. Eng. 20, 949–966

    Google Scholar 

  • Andreaus, U.; D'Asdia, P. (1988): An incremental procedure for deformation analysis of elastic-plastic frames. Int. J. Numer. Meth. Eng. 26, 769–784

    Google Scholar 

  • Argyris, J. H.; Boni, B.; Hindenlang, U.; Kleiber, M. (1982): Finite element analysis of two-and three-dimensional elasto-plastic frames. The natural approach. Comp. Meth. Appl. Mech. Eng. 35, 221–248

    Google Scholar 

  • Cichon, C. (1984): Large displacements in-plane analysis of elastic-plastic frames. Comp. Struct. 19, 737–745

    Google Scholar 

  • Chen, W. F.; Sugimoto, H. (1987): Analysis of tubular beam-columns and frames under reversed loading. Eng. Struct. 9, 233–242

    Google Scholar 

  • Cohn, M. Z.; Rafay, T. (1977): Deformations of plastic frames considering axial forces. J. Eng. Mech. Div., ASCE 103, 725–745

    Google Scholar 

  • Creus, G. J.; Torres, P. L.; Groehs, A. G. (1984): Elastoplastic frame analysis with generalized yield function and finite displacements. Comp. Struct. 18, 925–929

    Google Scholar 

  • El.Zenaty, H.; Murray, D. W. (1983): Nonlinear finite element analysis of steel frames. J. Struct. Eng. ASCE 109, 353–368

    Google Scholar 

  • Grierson, D. E.; Gladwell, G. M. L. (1971): Collapse load analysis using linear programming. J. Struct. Eng. 97, 1561–1573

    Google Scholar 

  • Grierson, D. E.; Abdel-Baset, S. B. (1977): Plastic analysis under combined stresses. J. Eng. Mech. Div., ASCE 103, 837–854

    Google Scholar 

  • Hilmy, S. I.; Abel, J. F. (1985): Material and geometric nonlinear dynamic analysis of steel frames using computer graphics. Comp. & Struct. 21, 825–840

    Google Scholar 

  • Horne, M. R. (1971): Plastic theory of structures. Cambridge. Mass.: The MIT Press

    Google Scholar 

  • Jennings, A.; Tam, T. K. H. (1986): Automatic plastic design of frames. Eng. Struct. 8, 139–147

    Google Scholar 

  • Kaneko, I.; Nappi, A. (1986): A basis decomposition linear programming approach to limit analysis. Eng. Analysis 3, 16–24

    Google Scholar 

  • Kassimali, A. (1983): Large deformation analysis of elastic-plastic frames. J. Struct. Eng. 109, 1869–1886

    Google Scholar 

  • Kondoh, K.; Atluri, S. N. (1987): Large deformation, elasto-plastic analysis of frames under nonconservative loading, using explicitly derived tangent stiffnesses based on assumed stresses. Comp. Mech. 2, 1–25

    Google Scholar 

  • Korn, A.; Galambos, T. V. (1968): Behavior of elastic-plastic frames. J. of Struct. Div.; ASCE 94, 1119–1142

    Google Scholar 

  • Korn, A. (1981): Effect of bowing on rectangular plane frames. J. of Struct. Div., ASCE 107, 569–574

    Google Scholar 

  • Powell, G. H.; Chen, P. F. S. (1986): 3D beam-column elements with generalized plastic hinges. J. Eng. Mech. Div. ASCE 112, 627–641

    Google Scholar 

  • Papadrakakis, M. (1986): Accelerating vector iteration methods. J. Appl. Mech., ASME 53, 291–297

    Google Scholar 

  • Papadrakakis, M.; Dra poulos, M. C. (1989): Improving the efficiency of preconditioning for iterative methods. Comp. Struct. (to be published.)

  • Ueda, Y.; Yao, T. (1982): The plastic node method: A new method of plastic analysis. Comp. Meth. Appl. Mech. Eng. 34, 1089–1104

    Google Scholar 

  • Watwood, V. B. (1979): Mechanism generation for limit analysis of frames. J. of Struct. Div., ASCE 109, 1–15

    Google Scholar 

  • Yang, T. Y.; Saigal, S. (1984): A simple element for static and dynamic response of beams with material and geometric nonlinearities. Int. J. Num. Meth. Eng. 20, 851–867

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by D. E. Beskos, January 2, 1991

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papadrakakis, M., Karamanos, S.A. A simple and efficient solution method for the limit elasto-plastic analysis of plane frames. Computational Mechanics 8, 235–248 (1991). https://doi.org/10.1007/BF00577377

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00577377

Keywords

Navigation