Advertisement

Die Steuerung des morphogenetischen Fließgleichgewichts in den Polypen vonHydractinia echinata

II. Chemisch-analytische Untersuchungen
  • Werner Alois Müller
Article

Zusammenfassung

  1. 1.

    In Homogenaten aller Gewebe ist ein thermostabiler Faktor zugegen, der inverspolare Regenerationen hervorruft. Isolierte, thermostabile Nesselgifte zeitigen gleiche Symptome. Eine thermolabile Substanz mit gleichsinniger Wirkung ist in Extrakten Cniden-freier Mundkegel nachweisbar.

     
  2. 2.

    Eine erst nach chromatographischer Trennung der Extrakte nachweisbare, in Nähr- und Geschlechtspolypen vorhandene Substanz ruft eine Erhöhung der Tentakelzahl und die Entwicklung von Tentakeln außerhalb des Tentakelkranzes hervor. Nach dem 1. Trennschritt an DEAE-Sephadex A-50 darüber hinaus gehäuft aufgetretene inverspolare Peristombildungen blieben nach der 2. Trennung an Sephadex G-25 im Bereich der normalen Häufigkeit. Der Tentakel-induzierende Faktor wird durch Trypsin zerstört; nach der Retention an G-25 liegt sein MG im Bereich der Peptidhormone.

     
  3. 3.

    Bei pH 6,8 und hoher Salinität (= 0,57 M NaCl) extrahierte, säulenchromatographisch und durch Reinecke-Präzipitation isolierte basische Proteine blockieren die Regeneration und rufen spasmische Kontraktionen hervor. Discelektrophoretisch waren bei pH 4,3 zwölf, bei pH 8,2 acht elektropositive Bande nachzuweisen.

     
  4. 4.

    Hydrorhizagewebe behält nach Gefriertrocknung seine induktive Kapazität.

     
  5. 5.

    In der Erörterung der Resultate wird u. a. bezüglich des apikalen Induktionssystems die Vorstellung einer Induktionskaskade der Vorstellung eines Konzentrationsgradienten gegenübergestellt. Es wird dargelegt, daß die hier und in vergleichbaren Arbeiten gewählten Testsysteme den Nachweis Peristom-induzierender („polarisierender“) Faktoren nicht gestatten.

     

Control of the Morphogenetic Steady State in the Polyps of Hydractinia echinata

II. Chemical analysis

Summary

  1. 1.

    In homogenates of all tissues, including the hydrorhiza, thermostable factors are present capable of evoking heteropolar regeneration. Isolated heat-stable nematocyst toxins lead, in proper concentrations, to the same symptoms. A heat-labile substance with analogous effects is traceable in extracts of the nematocyst-free proboscis.

     
  2. 2.

    Extracts of gastrozooids and of blastostyles supply a substance which brings about the development of supernumerary tentacles. This substance, which was detectable only after separation of the extract by column chromatography, is digested by trypsin and seems to have a molecular weight in the range of peptide hormones. Heteropolar head-formations, which beyond that have been evoked after the first Chromatographie step on DEAE-Sephadex A-50, remained within the normal range of frequency after further purifying the substance with Sephadex G-25.

     
  3. 3.

    Basic proteins, extracted with 0.57 M NaCl at pH 6.8, and purified by Reineckeprecipitation and by chromatography, block any regeneration and evoke spasmic contractions. By means of discelektrophoresis eight (at pH 8.2) resp. twelve (at pH 4.3) electropositive proteins have been detectable.

     
  4. 4.

    Material of the hydrorhiza retains, when freeze-dried, its inductive capacity.

     
  5. 5.

    In the discussion of the results concerning the apical inducers, the gradient hypothesis is confronted with the concept of an induction sequence. Furthermore, it is explained, that the testing system chosen here and in similar works does not prove the existence of hypostomeinducing (“polarizing”) factors, since not only specific inducers but also inhibitors interfering with the dominance system will give rise to heteropolar regeneration.

     

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Akin, G. C., andJ. R. Akin: The effect of trypsin on regeneration inhibitors inTubularia. Biol. Bull.133, 82–89 (1967).Google Scholar
  2. Barth, L. G.: The effect of constant electric current on the regeneration of certain hydroids. Physiol. Zool.7, 340–364 (1934).Google Scholar
  3. —: The process of regeneration in hydroids. Biol. Rev.15, 405–420 (1940).Google Scholar
  4. Bloch, D. P., andG. C. Godman: A microphotometric study of the syntheses of desoxyribonucleic acid and nuclear histone. J. biophys. biochem. Cytol.1, 17–28 (1955).Google Scholar
  5. Burnett, A. L.: The growth process in hydra. J. exp. Zool.146, 21–84 (1961).Google Scholar
  6. —: The maintenance of form inHydra. In: Regeneration. 20th Growth Symposium (D. RudNick, ed.), p. 27–52. New York: The Ronald Press 1962.Google Scholar
  7. —: A model of growth and cell differentiation inHydra. Amer. Naturalist100, 165–190 (1966).Google Scholar
  8. —,W. Sindelar, andN. Diehl: An examination of polymorphism in the hydroidHydractinia echinata. J. mar. biol. Ass. U.K.47, 645–658 (1967).Google Scholar
  9. Campbell, R. D.: Tissue dynamics of steady state growth inHydra littoralis. II. Patterns of tissue movement. J. Morph.121, 19–28 (1967).Google Scholar
  10. —: Tissue dynamics of steady state growth inHydra littoralis. III. Behavior of specific cell types during tissue movement. J. exp. Zool.164, 379–392 (1967).Google Scholar
  11. —: Cell proliferation and morphological patterns in the hydroidsTubularia andHydractinia. J. Embryol. exp. Morph.17, 607–616 (1967).Google Scholar
  12. Child, C. M., andL. H. Hyman: Axial gradients in the hydrozoa. Biol. Bull.36, 183–221 (1919).Google Scholar
  13. Kühn, A.: Vorlesungen über Entwicklungsphysiologie, 2. Aufl. Berlin-Heidelberg-New York: Springer 1965.Google Scholar
  14. Lenique, P. M., andM. Lundblad: Promotors and inhibitors of development during regeneration of the hypostome and tentacles ofClava squamata. Acta zool.47, 185–195 (1966).Google Scholar
  15. Lentz, Th. L.: Induction of supernumary heads by isolated neurosecretory granules. Science150, 633–635 (1965).Google Scholar
  16. Lesh, G. H., andA. L. Burnett: An analysis of the chemical control of polarized form in hydra. J. exp. Zool.163, 55–78 (1966).Google Scholar
  17. Lindh, N. O., andB. L. Brantmark: Preparation of histones by the use of Reinecke salt. Anal. Biochem.10, 415–420 (1965).Google Scholar
  18. MacWilliams, H. K., andF. C. Kafatos:Hydra viridis: Inhibition by the basal disk of basal disk differentiation. Science159, 1246–1247 (1968).Google Scholar
  19. Moscona, A. A.: Developing cell systems and their controls. New York: The Ronald Press 1960.Google Scholar
  20. —: Studies on cell aggregation: Demonstration of materials with selective cell binding activities. Proc. nat. Acad. Sci. (Wash.)49, 742–747 (1963).Google Scholar
  21. Müller, W.: Experimentelle Untersuchungen über Stockentwicklung, Polypendifferenzierung und Sexualchimären beiHydractinia echinata. Wilhelm Roux' Arch. Entwickl.Mech. Org.155, 181–268 (1964).Google Scholar
  22. —: Differenzierungspotenzen und Geschlechtsstabilität der I-Zellen vonHydractinia echinata. Wilhelm Roux' Arch. Entwickl.-Mech. Org.159, 412–432 (1967).Google Scholar
  23. —: Steuerung des morphogenetischen Fließgleichgewichtes in den Polypen vonHydractinia echinata. I. Biologisch-experimentelle Untersuchungen. Wilhelm Roux' Archiv163, 334–356 (1969).Google Scholar
  24. Rose, S. M.: Polarized inhibitory control of regional differentiation during regeneration inTubularia. II. Separation of active materials by electrophoresis. Growth30, 429–447 (1966).Google Scholar
  25. —: Polarized inhibitory control of regional differentiation during regeneration inTubularia: III. The effect of grafts across sea water-agar bridges in electric fields. Growth31, 149–164 (1967).Google Scholar
  26. — andJ. A. Powers: Polarized inhibitory control of regional differentiation during regeneration inTubularia: I. The effect of extracts from distal and proximal regions. Growth30, 419–427 (1966).Google Scholar
  27. Stumpf, H. F.: Differenzierung durch die Niveauwerte eines Konzentrationsgefälles. Verh. Dtsch. Zool. Ges., 1966, Göttingen. Zool. Anz.30, Suppl., 477–490 (1967).Google Scholar
  28. —: Gradienten im Entwicklungsgeschehen von Tieren. Naturw. Rdsch.21, 324–331 (1968).Google Scholar
  29. Tardent, P.: Principles governing the process of regeneration in hydroids. In: Developing cell systems (D. Rudnick, ed.), p. 21–43. New York: The Ronald Press 1960.Google Scholar
  30. —: Regeneration in the hydrozoa. Biol. Rev.38, 293–333 (1963).Google Scholar
  31. Webster, G.: Studies on pattern regulation in hydra. IV. The effect of colcemide and puromycin on polarity and regulation. J. Embryol. exp. Morph.18, 181–197 (1967).Google Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • Werner Alois Müller
    • 1
    • 2
  1. 1.Laboratory of the Marine Biological Association of the United KingdomPlymouth
  2. 2.Zoologisches Institut der Technischen Universität BraunschweigUK

Personalised recommendations