Advertisement

Theoretica chimica acta

, Volume 55, Issue 2, pp 103–115 | Cite as

Optical rotatory strength calculation by evaluating the gradient matrix through the equation of motion

  • P. R. Surján
  • M. Kertész
Original Investigations

Abstract

A straightforward generalization of Linderberg's equation-of-motion-based formula for the matrix elements of the linear momentum operator is proposed. The essential feature of the modification is the abandonment of the zero differential overlap (ZDO) approximation for the electric transition integrals. It is expected that this new formula gives better transition moments and, consequently, better optical rotatory strength values. The results of this modification are analysed numerically for the rotatory strengths of the twisted hydrogen peroxide and for the 1,6-diazaspiro[4,4]-nonane-2,7-dione, C7H10N2O2, molecule, using a CNDO Hamiltonian. For both systems a definitive improvement of calculated rotatory strengths resulted.

Key words

Optical rotatory strength Linderberg's equation of motion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rosenfeld, L.: Z. Physik52, 161 (1928)Google Scholar
  2. 2.
    Maloň, P., Bláha, K.: Coll. Czech. Cem. Commun.42, 687 (1977)Google Scholar
  3. 3.
    Volosov, A. P., Zubkov, V. A.: Theoret. Chim. Acta (Berl.)44, 375 (1977)Google Scholar
  4. 4.
    Bouman, T. D., Lightner, D. A.: J. Am. Chem. Soc.98, 3145 (1976)Google Scholar
  5. 5.
    Chen, J. C. Y.: J. Chem. Phys.40 615 (1964)Google Scholar
  6. 6.
    Bethe, H. A., Salpeter, E. E.: Quantum mechanics of one- and two-electron atoms. New York: Academic Press 1957Google Scholar
  7. 7.
    See, e.g., Landau, L. D., Lifschitz, E. M.: Lehrbuch der Theoretischen Physik, Vol. 3. Berlin: Akademie Verlag, 1965Google Scholar
  8. 8.
    Moscowitz, A.: Tetrahedron13, 48 (1961)Google Scholar
  9. 9.
    Harris, R.: J. Chem. Phys.50, 3947 (1969)Google Scholar
  10. 10.
    Dalgarno, A., Lewis, J. T.: Proc. Roy. Soc. (London)A233, 70 (1955)Google Scholar
  11. 11.
    Gould, R. R., Hoffmann, R.: J. Am. Chem. Soc.92, 1813 (1970)Google Scholar
  12. 12.
    Hansen, A. E.: Theoret. Chim. Acta (Berl.)6, 341 (1966)Google Scholar
  13. 13.
    Pariser, R., Parr, R. G.: J. Chem. Phys.21, 466 (1953)Google Scholar
  14. 14.
    Pople, J. A.: Trans. Faraday Soc.49, 1375 (1953)Google Scholar
  15. 15.
    Pople, J. A., Santry, D. F., Segal, G. A.: J. Chem. Phys.43, S129 (1965)Google Scholar
  16. 16.
    Linderberg, J.: Chem. Phys. Letters1, 39 (1967)Google Scholar
  17. 17.
    Linderberg, J., Michl, J.: J. Am. Chem. Soc.92, 2619 (1970)Google Scholar
  18. 18.
    Herrmann, E. C.: Chem. Phys. Letters11, 1 (1971)Google Scholar
  19. 19.
    Groen, M. B., Wynberg, H.: J. Am. Chem. Soc.93, 2698 (1971)Google Scholar
  20. 20.
    Seamans, L., Linderberg, J.: Mol. Phys.24, 1393 (1972)Google Scholar
  21. 21.
    Michl, J., Michl, J.: J. Am. Chem. Soc.96, 7887 (1974)Google Scholar
  22. 22.
    Smith, H. E., Orr, R. K., Chen, Fu-Ming: J. Am. Chem. Soc.97, 3126 (1975)Google Scholar
  23. 23.
    Smith, H. E., Podilla, B. G., Neergard, J. R., Chen, Fu-Ming: J.Am. Chem. Soc.100, 6035 (1978)Google Scholar
  24. 24.
    Michl, J.: J. Am. Chem. Soc.100, 6801 (1978)Google Scholar
  25. 25.
    Michl, J.: J. Am. Chem. Soc.100, 6821 (1978)Google Scholar
  26. 26.
    Castellan, A., Michl, J.: J. Am. Chem. Soc.100, 6824 (1978)Google Scholar
  27. 27.
    Pople, J. A., Beveridge, D. L., Dobosh, P. A.: J. Chem. Phys.47, 2026 (1967)Google Scholar
  28. 28.
    Linderberg, J., Seamans, L.: Intern. J. Quantum Chem.8, 925 (1974)Google Scholar
  29. 29.
    Linderberg, J., Öhm, Y.: Proc. Roy. Soc. (London)A285, 445 (1965)Google Scholar
  30. 30.
    Linderberg, J., Öhrn, Y.: Propagators in quantum chemistry, pp. 79–80, 88. London: Academic Press, 1973Google Scholar
  31. 31.
    McWeeny, R.: Phys. Letters9, 341 (1971)Google Scholar
  32. 32.
    London, F.: J. Phys. Radium8, 397 (1937)Google Scholar
  33. 33.
    Dalgaard, E., Linderberg, J.: Intern. J. Quantum Chem.S9, 269 (1975)Google Scholar
  34. 34.
    Dalgaard, E., Linderberg, J.: J. Chem. Phys.65, 692 (1976)Google Scholar
  35. 35.
    Hug, W., Wagniere, C.: Theoret. Chim. Acta (Berl.)18, 57 (1970)Google Scholar
  36. 36.
    Malon, P., Tichy, M., Blaha, K.: Coll. Czech. Chem. Commun.42, 678 (1977)Google Scholar
  37. 37.
    Kotani, M., Amemiya, A., Ishiguro, E., Kimura, T.: Tables of molecular integrals. Tokyo: Maruzen, 1955Google Scholar
  38. 38.
    Redington, R. L., Olson, W. B., Cross, P. C.: J. Chem. Phys.36, 1311 (1962)Google Scholar
  39. 39.
    Bouman, T. D., Hansen, A. E.: J. Chem. Phys.66, 3460 (1977)Google Scholar
  40. 40.
    Rauk, A., Barriel, J. M.: Chem. Phys.25, 409 (1977)Google Scholar
  41. 41.
    Rauk, A., Jarvie, J. O., Ichimura, H., Barriel, J. M.: J. Am. Chem. Soc.97, 5656 (1975)Google Scholar
  42. 42.
    Hansen, A. E., Bouman, T. D.: Chem. Phys. Letters45, 326 (1977)Google Scholar
  43. 43.
    Czugler, M., Kálmán, A., Kajtár, M.: Cryst. Struct. Commun.5, 25 (1976)Google Scholar
  44. 44.
    Horváth, G., Kajtár, M.: private communicationGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • P. R. Surján
    • 1
  • M. Kertész
    • 2
  1. 1.CHINOIN Pharmaceutical and Chemical WorksBudapestHungary
  2. 2.Central Research Institute for ChemistryHungarian Academy of SciencesBudapestHungary

Personalised recommendations