Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

An electron microscopic and radioautographic study of hypostomal regeneration inHydra viridis

  • 24 Accesses

  • 8 Citations

Summary

The gastrodermal secretory cells inHydra viridis are limited to specific regions in the body column. There are two types of mucous cells present, and they are limited to the hypostome. The zymogen cells are absent from the hypostome, but they extend along the body column from the tentacles to the peduncle. Transection beneath the tentacles produces a proximal portion of the hydra devoid of mucous cells. This piece regenerates new tentacles and a normal hypostome, filled with mucous cells, within four days.

The following events were observed during regeneration. The zymogen cells formed an aggregate within twenty-four hours in the region of the presumptive hypostome. These cells organized and formed lobes of zymogen cells that were positioned similarly to the arrangement of mucous cells in the normal animal. Sparsely distributed small basophilic cells were also present in the reforming hypostome. Using corresponding thick and thin sections we identified the cells incorporating radiosulfate: 1) The zymogen cells in the distal aggregate. 2) Small basophilic cells, some filled with free ribosomes, and others with a well-developed E. R. 3) Secretory cells containing both mucous and serous granules. 4) Secretory cells with granules similar to the granules in mouse Paneth cells.

The fate of the secretory granules in the zymogen cells in the distal aggregate is unknown. Some are autolysed within the cell, and others are extruded. However, some observations suggest that there may be a direct transformation of some of the serous granules to mucous granules. The E. M. observations, the radiosulfate incorporation data, and the migrations of cells to the wound site, suggest that both the zymogen cells and basophilic cells transform to mucous cells. Identification of the early stages of mucous synthesis in these basophilic cells enabled us to study the sequence of mucous granule maturation of both the hypostomal mucous cells.

The two most significant questions which we feel remain unaswered are: 1) What are the ultrastructural events during the zymogen cell transformation to a mucous cell ? 2) What is the origin of the small gastrodermal basophilic cells ?

Zusammenfassung

Die gastrodermalen sekretorischen Zellen von Hydra viridis kommen nur in spezifischen Regionen der Körpersäule vor. Es gibt zwei Typen muköser Zellen, und diese findet man ausschließlich im Hypostom. Zymogene Zellen gibt es nicht im Hypostom, aber erstrecken sich längs der Körperachse von den Tentakeln zum Pedunkulus. Sektion unterhalb der Tentakel produziert eine proximale Region von Hydra ohne muköse Zellen. Dieses Stück regeneriert neue Tentakel und ein normales Hypostom mit mukösen Zellen innerhalb vier Tagen.

Die folgenden Vorgänge wurden beobachtet während der Regeneration. Die Zymogenzellen bildeten ein Aggregat in der Gegend des präsumptiven Hypostoms innerhalb 24 Std. Diese Zellen bildeten Lappen von Zymogenzellen in ähnlicher Anordnung wie die mukösen Zellen im Normaltier. Ebenfalls vorhanden im neu sich bildenden Hypostom waren locker verteilte, kleine basophile Zellen. Durch Verwendung alternierender dicker und dünner Schnitte identifizierten wir die Zellen, die radioaktives Sulfat einbauten: 1. Zymogenzellen im distalen Aggregat. 2. Kleine basophile Zellen, einige mit freien Ribosomen angefüllt, andere mit gut entwickelten endoplasmatischen Retikulum. 3. Sekretorische Zellen mit mukösen und serösen Granula. 4. Sekretorische Zellen mit Granula, die ähnlich aussehen wie die Granula von Maus Paneth-Zellen. Das Schicksal der sekretorischen Granula in den Zymogenzellen des distalen Aggregates ist unbekannt. Einige werden innerhalb der Zellen autolysiert, andere ausgestoßen. Es scheint aber, daß einige der seriösen Körner sich direkt in muköse umwandeln. Die elektronenoptischen Bilder, die Ergebnisse des Sulfat-Einbaus, und die Wanderung von Zellen zur Wunde weisen darauf hin, daß sowohl Zymogenzellen, als auch basophile Zellen sich in muköse Zellen verwandeln. Identifikationen der Frühstadien von Mukus-Synthese in diesen basophilen Zellen erlaubte uns, die Sequenz der Reifung der Mukus-Granula beider hypostomalen Mukuszellen zu studieren.

Die zwei wichtigsten, noch unbeantworteten Fragen verbleiben: 1. Was für feinstrukturelle Veränderungen finden statt während der Transformation von Zymogenzellen in muköse Zellen ? 2. Woher stammen die kleinen gastrodermalen, basophilen Zellen ?

This is a preview of subscription content, log in to check access.

References

  1. Bouillon, J.: Les cellules glandulaires des hydroïdes et hydroméduses. Leur structure et la nature de leurs sécrétions. Cah. Biol. Mar.7, 157–205 (1966).

  2. Brien, P.: La perennité somatique. Biol. Rev.28, 208–249 (1953).

  3. —, andM. Reniers-Decoen: La croissance, la blastogénèse, l'ovogénèse, chezHydra fusca (Pallas). Bull. biol. France et Belg.82, 293–386 (1949).

  4. — —: Etude d'Hydra viridis (Linnaeus). La blastogénèse, la spermatogénèse, l'ovogénèse. Ann. Soc. roy. zool. Belg.81, 33–110 (1950).

  5. — —: La signification des cellules interstitielles des hydres d'eau douce et le problème de la réserve embryonnaire. Bull. biol. France et Belg.89, 258–325 (1955).

  6. Burnett, A. L., L. E. Davis, andF. E. Ruffing: A histological and ultrastructural study of germinal differentiation of interstitial cells arising from gland cells inHydra viridis. J. Morph.120, 1–8 (1966).

  7. —, andN. Diehl: The nervous system of hydra. I. Types, distribution and origin of nerve elements. J. exp. Zool.157, 217–226 (1964).

  8. Caro, L. G.: Electron microscopic radioautography of thin sections: the Golgi zone as a site of protein concentration in pancreatic acinar cells. J. biophys. biochem. Cytol.10, 37–46 (1961).

  9. —, andG. E. Palade: Protein synthesis, storage and discharge in the pancreatic acinar cell. An autoradiographic study. J. Cell Biol.20, 473–495 (1964).

  10. Curran, R. C.: The histochemistry of mucopolysaccharides. Int. Rev. Cytol.17, 149–212 (1964).

  11. Davis, L. E., A. L. Burnett, J. F. Haynes, andV. R. Mumaw: A histological and ultrastructural study of dedifferentiation and redifferentiation of digestive and gland cells inHydra viridis. Develop. Biol.14, 307–329 (1966).

  12. Farquhar, M. G., andG. E. Palade: Junctional complexes in various epithelia. J. Cell Biol.17, 375–412 (1963).

  13. Friend, D. S.: The fine structure of Brunner's glands in the mouse. J. Cell Biol.25, 563–576 (1965).

  14. Godman, G. C., andN. Lane: On the site of sulfation in the chondrocyte. J. Cell Biol.21, 353–366 (1964).

  15. Haynes, J., andA. L. Burnett: Dedifferentiation and redifferentiation of the cells inHydra viridis. Science142, 1481–1483 (1963).

  16. Jamieson, J. D., andG. E. Palade: Intracellular transport of secretory proteins in the pancreatic exocrine cell. I. Role of the peripheral elements of the Golgi complex. J. Cell Biol.34, 577–596 (1967a).

  17. — —: Intracellular transport of secretory proteins in the pancreatic exocrine cell. II. Transport to condensing vacuoles and zymogen granules. J. Cell Biol.34, 597–615 (1967b).

  18. Lane, N., L. Caro, L. R. Otero-Vilardebó, andG. C. Godman: On the site of sulfation in colonic goblet cells. J. Cell Biol.21, 339–351 (1964).

  19. Lentz, T. L.: Fine structural changes in the nervous system of the regenerating hydra. J. exp. Zool.159, 181–194 (1965a).

  20. —: The fine structure of differentiating interstitial cells in hydra. Z. Zellforsch.67, 547–560 (1965b).

  21. Loomis, W. F., andH. Lenhoff: Growth and sexual differentiation on hydra in mass culture. J. exp. Zool.132, 555–568 (1956).

  22. Luft, J. H.: Improvements in epoxy resin embedding methods. J. biophys. biochem. Cytol.9, 409–414 (1961).

  23. Moe, H.: The ultrastructure of Brunner's glands of the cat. J. Ultrastruct. Res.4, 58–72 (1960).

  24. Neutra, M., andC. P. Leblond: Synthesis of the carbohydrate of mucus in the Golgi complex as shown by electron microscope radioautography of goblet cells from rats injected with glucose-H3. J. Cell Biol.30, 119–136 (1966).

  25. Palade, G. E.: A study of fixation for electron microscopy. J. exp. Med.95, 285–298 (1952).

  26. Rose, P. G., andA. L. Burnett: An electron microscopic and histochemical study of the secretory cells inHydra viridis. Wilhelm Roux Archiv161, 281–297 (1968).

  27. Sabatini, D. D., K. Bensch, andR. J. Barrnett: Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J. Cell Biol.17, 17–58 (1963).

  28. Siekevitz, P., andG. E. Palade: A cytochemical study on the pancreas of the guinea pig. I. Isolation and enzymatic activities of cell fractions. J. biophys. biochem. Cytol.4, 309–318 (1958a).

  29. — —: A cytochemical study on the pancreas of the guinea pig. III. In vivo incorporation of leucine-1-C14 into the proteins of cell fractions. J. biophys. biochem. Cytol.4, 557–566 (1958b).

  30. Slautterback, D. B.: Nematocyst development. In: The biology of hydra and some other coelenterates (H. M. Lenhoff andW. F. Loomis, eds.), p. 77–129. Coral Gables, Fla.: Miami University Press 1961.

  31. —, andD. W. Fawcett: The development of the cnidoblasts of hydra. An electron microscope study of cell differentiation. J. biophys. biochem. Cytol.5, 441–452 (1952).

  32. Spicer, S. S.: Cit. in R. C.Curran, op. cit.. Ann. Histochem.7, 23 (1962a).

  33. —: Basic protein visualized histochemically in mucinous secretions. Exp. Cell Res.28, 480–488 (1962b).

  34. —, andR. D. Lillie: Histochemical identification of basic proteins with bierbrick scarlet at alkaline pH. Stain Technol.36, 365–370 (1961).

  35. —, andD. C. H. Sun: Carbohydrate histochemistry of gastric epithelial secretions in dog. Ann. N. Y. Acad. Sci.140, 762–783 (1967).

  36. Venable, J. H., andR. Coggeshall: A simplified lead citrate stain for use in electron microscopy. J. Cell Biol.25, 407–408 (1965).

  37. Watson, M. L.: Staining of tissue sections for electron microscopy with heavy metals. J biophys. biochem. Cytol.4, 475–478 (1958).

  38. Zeigel, R. F., andA. J. Dalton: Speculations based on the morphology of the Golgi systems in several types of protein-secreting cells. J. Cell Biol.15, 45–54 (1962).

Download references

Author information

Additional information

This paper was prepared from a thesis submitted in partial fulfillment for the degree of Master of Arts.

This work was supported by the National Institutes of Health grant No GM-11218 to Dr. A. L.Burnett.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rose, P.G., Burnett, A.L. An electron microscopic and radioautographic study of hypostomal regeneration inHydra viridis . W. Roux' Archiv f. Entwicklungsmechanik 161, 298–318 (1968). https://doi.org/10.1007/BF00576682

Download citation

Keywords

  • Secretory Cell
  • Mucous Cell
  • Paneth Cell
  • Basophilic Cell
  • Mucous Granule