Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effects of solute ion and grain size on superplasticity of ZrO2 polycrystals

Abstract

The deformation of ZrO2 polycrystals containing 2 to 8 mol% Y2O3 or 12 mol% CeO2 were investigated by uniaxial tension and tensile creep tests at elevated temperatures. It was found that there were two deformation mechanisms. The stress exponent was close to 2 for the finegrained materials (less than 1 μm), but the exponent decreased with increasing grain size. This behaviour was analysed using a model based on grain-boundary sliding with diffusion accommodation, in which the diffusion creep controlled by interface-reaction and that controlled by diffusion of cations were incorporated. The diffusion coefficient of cations was greatly affected by the concentration of the solute ions. It was observed that there was a negative correlation between interface-reaction rate and Y2O3 concentration.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    J. F. Baumard andP. Abeland, in “Advances in Ceramics”, Vol. 12, edited by N. Claussen, M. Rüble and A. H. Heuer (American Ceramic Society, Columbus, Ohio, 1984) p. 555.

  2. 2.

    W. D. Kingery, J. Pappis, M. E. Doty andD. C. Hill,J. Amer. Ceram. Soc. 42 (1959) 393.

  3. 3.

    L. A. Simpson andR. E. Carter,ibid. 49 (1966) 139.

  4. 4.

    W. H. Rhodes andR. E. Carter,ibid. 49 (1966) 244.

  5. 5.

    Y. Oishi, K. Ando andY. Sakka, in “Advances in Ceramics”, Vol. 7, edited by M. F. Yan and A. H. Heuer (American Ceramic Society, Columbus, Ohio, 1983) p. 208.

  6. 6.

    N. Bonanos, R. K. Slotwinski, B. C. H. Steele andE. P. Butler,J. Mater. Sci. Lett. 3 (1984) 245.

  7. 7.

    S. P. S. Badwal,ibid. 6 (1987) 1419.

  8. 8.

    P. E. Evans,J. Amer. Ceram. Soc. 53 (1970) 365.

  9. 9.

    M. S. Seltzer andP. K. Talty,ibid. 58 (1975) 124.

  10. 10.

    R. G. St-Jacques andR. Angers,ibid. 55 (1972) 571.

  11. 11.

    Idem., Trans. Brit. Ceram. Soc. 72 (1973) 285.

  12. 12.

    D. Dimos andD. L. Kohlstedt,J. Amer. Ceram. Soc. 70 (1987) 531.

  13. 13.

    F. Wakai, S. Sakaguchi andY. Matsuno,Adv. Ceram. Mater. 1 (1986) 259.

  14. 14.

    F. Wakai, S. Sakaguchi andH. Kato,Yogyo-Kyokai-Shi 94 (1986) 721.

  15. 15.

    F. Wakai, N. Murayama, S. Sakaguchi, H. Kato andK. Kuroda, “Advances in Ceramics”, Vol. 24, “Science and Technology of Zirconia III”, edited by S. Somiya, N. Yamamoto and H. Yanagida (American Ceramic Society, Columbus, Ohio, 1988) p. 583.

  16. 16.

    C. Carry andA. Mocellin,Ceram. Int. 13 (1987) 89.

  17. 17.

    R. Duclos andJ. Crampon,J. Mater. Sci. Lett. 6 (1987) 905.

  18. 18.

    F. Wakai andH. Kato,Adv. Ceram. Mater. 3 (1988) 71.

  19. 19.

    M. F. Ashby andR. A. Verrall,Acta Metall 21 (1973) 149.

  20. 20.

    F. R. N. Nabarro,Phil. Mag. 16 (1967) 231.

  21. 21.

    C. Herring,J. Appl. Phys. 21 (1950) 437.

  22. 22.

    R. L. Coble,ibid. 34 (1963) 1679.

  23. 23.

    M. F. Ashby,Scripta Metall. 3 (1969) 837.

  24. 24.

    G. W. Greenwood,ibid. 4 (1970) 171.

  25. 25.

    B. Burton,Mater. Sci. Engng 10 (1972) 9.

  26. 26.

    Idem., Phil. Mag. A 48 (1983) L9.

  27. 27.

    R. M. Cannon, W. H. Rhodes andA. H. Heuer,J. Amer. Ceram. Soc. 63 (1980) 46.

  28. 28.

    E. Arzt, M. F. Ashby andR. A. Verral,Acta Metall. 31 (1983) 1977.

  29. 29.

    F. Wakai andT. Nagano,J. Mater. Sci. Lett,7 (1988) 607.

  30. 30.

    T. K. Gupta, J. H. Bechtold, R. C. Kuznicki andL. H. Cadoff,J. Mater. Sci. 12 (1977) 2421.

  31. 31.

    F. F. Lange,ibid. 17 (1982) 240.

  32. 32.

    K. Tsukuma, Y. Kubota andT. Tsukidate, in “Advances in Ceramics”, Vol. 12, edited by N. Claussen, M. Rühle and A. H. Heuer (American Ceramic Society, Columbus, Ohio, 1984) p. 382.

  33. 33.

    K. Tsukuma andM. Shimada,J. Mater. Sci. 20 (1985) 1178.

  34. 34.

    A. Dominguez-Rodriguez, V. Lanteri andA. H. Heuer,J. Amer. Ceram. Soc. 69 (1986) 281.

  35. 35.

    M. Rühle, N. Claussen andA. H. Heuer (eds) in “Advances in Ceramics”, Vol. 12 (American Ceramic Society, Columbus, Ohio, 1984) p. 352.

  36. 36.

    M. L. Mecartney,J. Amer. Ceram. Soc. 70 (1987) 54.

  37. 37.

    D. R. Clark,ibid. 70 (1987) 15.

  38. 38.

    J. E. Marion, C. H. Hsueh andA. G. Evans,ibid. 70 (1987) 708.

  39. 39.

    Y. Ikuhara, H. Kurishita andH. Yoshinaga,Yogyo-Kyokai-Shi 95 (1987) 638.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wakai, F., Nagano, T. Effects of solute ion and grain size on superplasticity of ZrO2 polycrystals. J Mater Sci 26, 241–247 (1991). https://doi.org/10.1007/BF00576058

Download citation

Keywords

  • Polymer
  • Grain Size
  • Diffusion Coefficient
  • Negative Correlation
  • Elevated Temperature