Advertisement

Journal of Materials Science

, Volume 26, Issue 1, pp 163–171 | Cite as

Strengthening in deformation-processed Cu-20% Fe composites

  • Y. S. Go
  • W. A. Spitzig
Papers

Abstract

Three Cu-20% Fe composites with different iron powder sizes were fabricated using powder metallurgy processes. The strengths of these composites after extensive deformation processing by rod swaging and wire drawing were shown to be anomalously higher than those predicted by rule of mixtures equations. However, the strengths obey a Hall-Petch type relationship with the iron filament spacings. The strengths of the Cu-20% Fe composites after equivalent deformation processing increased with decreasing initial iron powder size. Comparison of a Cu-20% Fe composite with a similar Cu-20% Nb composite showed that Cu-20% Fe was stronger after an identical degree of deformation processing. This increase in strength of a Cu-20% Fe composite over that of a Cu-20% Nb composite correlated with the greater shear modulus of iron compared to niobium using a barrier model for hardening.

Keywords

Deformation Processing Iron Powder Wire Drawing Extensive Deformation Barrier Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. P. Cheremisinoff andP. N. Cheremisinoff, “Fiberglass-Reinforced Plastics Deskbook” (Ann Arbor Science, Ann Arbor, Michigan, 1978) Ch. 1.Google Scholar
  2. 2.
    K. M. Ralls, T. H. Courtney andJ. Wulff, “Introduction to Materials Science and Engineering” (Wiley, New York, 1976) p. 400.Google Scholar
  3. 3.
    B. D. Agarwal andL. J. Broutman, “Analysis and Performance of Fiber Composites” (Wiley, New York, 1980) Ch. 1.Google Scholar
  4. 4.
    T. A. Nielson, MS thesis, Michigan Technological University (1982).Google Scholar
  5. 5.
    C. L. Trybus, W. A. Spitzig, J. D. Verhoeven andF.A. Schmidt, in “Powder Metallurgy Composites”, edited by P. Kumar, K. Vedula and A. Ritter (The Metallurgical Society, Warrendale, Pennsylvania, 1988) p. 97.Google Scholar
  6. 6.
    Y. D. Yao andS. Foner,Appl. Phys. Lett. 43 (1983) 697.Google Scholar
  7. 7.
    G. Frommeyer andG. Wassermann,Acta Metall. 23 (1975) 1353.Google Scholar
  8. 8.
    D. G. Kubisch andT. H. Courtney,Met. Trans. 17A (1986) 1165.Google Scholar
  9. 9.
    J. D. Verhoeven, F. A. Schmidt, E. D. Gibson andW. A. Spitzig,J. Metals 38 (9) (1986) 20.Google Scholar
  10. 10.
    J. D. Verhoeven, E. D. Gibson, F. A. Schmidt andD. K. Finnemore,J. Mater. Sci. 15 (1980) 1449.Google Scholar
  11. 11.
    F. D. Levi,J. Appl. Phys. 31 (1960) 1449.Google Scholar
  12. 12.
    G. Garmong andL. A. Shepard,Met. Trans. 2 (1971) 175.Google Scholar
  13. 13.
    B. J. Shaw,Acta Metall. 15 (1967) 1169.Google Scholar
  14. 14.
    Y. T. Chou,Canad. J. Phys. 45 (1967) 559.Google Scholar
  15. 15.
    J. Bevk, J. P. Harbison andJ. L. Bell,J. Appl. Phys. 49 (1978) 6031.Google Scholar
  16. 16.
    W. A. Spitzig, A. R. Pelton andF. C. Laabs,Acta Metall. 35 (1987) 2427.Google Scholar
  17. 17.
    N. J. Petch,J. Iron Steel Inst. 174 (1953) 25.Google Scholar
  18. 18.
    E. O. Hall,Proc. Phys. Soc. Lond. B64 (1951) 747.Google Scholar
  19. 19.
    W. A. Spitzig, P. D. Krotz, L. S. Chumbley, H. L. Downing, andJ. D. Verhoeven,Mater. Res. Soc. Symp. Proc. 120 (1988) 45.Google Scholar
  20. 20.
    E. E. Underwood, “Quantitative Stereology” (Addison-Wesley, Reading, Massachusetts, 1970) Chs 3 and 4.Google Scholar
  21. 21.
    M. A. Meyers andK. K. Chawla, “Mechanical Metallurgy” (Prentice Hall, Englewood Cliffs, New Jersey, 1984) Chs 1 and 12.Google Scholar
  22. 22.
    W. A. Spitzig andP. D. Krotz,Acta Metall. 36 (1988) 1709.Google Scholar
  23. 23.
    P. D. Funkenbusch andT. H. Courtney,Scripta Metall. 15 (1981) 1349.Google Scholar
  24. 24.
    J. D. Verhoeven, S. C. Chueh andE. D. Gibson,J. Mater. Sci. 24 (1989) 1748.Google Scholar
  25. 25.
    R. W. Armstrong, in “Yield, Flow and Fracture of Polycrystals”, edited by T. N. Baker (Applied Science, New York, 1983) Ch. 1.Google Scholar

Copyright information

© Chapman and Hall Ltd 1991

Authors and Affiliations

  • Y. S. Go
    • 1
  • W. A. Spitzig
    • 2
  1. 1.South Korea
  2. 2.Metallurgy and Ceramics division, Ames Laboratory-USDOEIowa State UniversityAmesUSA

Personalised recommendations