Chemistry of Natural Compounds

, Volume 19, Issue 4, pp 469–475 | Cite as

Synthesis of dinitrophenyltetrapeptides as chromophoric substrates of endoproteinases

  • S. V. Kulikov
  • N. Yu. Sokolova
  • S. V. Rodin
  • M. A. Samartsev
Article
  • 30 Downloads

Abstract

The synthesis has been performed of ten tetrapeptides of the general formula Dnp-Gly-Gly-X-Arg-OH, where X = Val, Phe, Abu, Asp (OBut), Asp, Met, D-Phe, Ser, Thr, or Trp. The synthesis was carried out with Dnp-Gly-Gly-ONp, activated esters of protected amino acids, and arginine with an unprotected carboxy group. The coefficients of molar extinction of the tetrapeptides at 660 nm are given. It has been shown that the peptides can be used to determine the activities of neutral and alkaline proteinases from various sources, the peptides with X = Phe, Met, and Abu exhibiting the highest sensitivity to enzymatic hydrolysis.

Keywords

Dipeptide Alkaline Proteinase DMFA Protected Amino Acid Palladium Black 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    E. Wünsch and H. C. Heidrich, Z. Physiol. Chem.,833, 149 (1963).CrossRefGoogle Scholar
  2. 2.
    Y. Masui, T. Takemoto, S. Sakakibara, H. Hori, and Y. Nagai, Biochem. Med.,17, 215 (1977).CrossRefGoogle Scholar
  3. 3.
    L. A. Lyublinskaya, L. V. Lastovetskaya, T. V. Shekhvatova, T. I. Vaganova, and V. M. Stepanov, Khim. Prir. Soedin., 75 (1976).Google Scholar
  4. 4.
    L. A. Lyublinskaya, T. I. Vaganova, L. D. Yakusheva, E. S. Oksenoit, and V. M. Stepanov, in: IVth All-Union Symposium on Protein and Peptide Chemistry [in Russian], Minsk (1977), p. 197.Google Scholar
  5. 5.
    S. V. Kulikov, N. Yu. Sokolova, É. N. Morozova, and N. P. Denisova, in: IVth All-Union Conference on Methods of Obtaining and Analyzing Biochemical Preparations [in Russian], Riga, Part 1 (1982), p. 42.Google Scholar
  6. 6.
    S. I. Virovets, V. F. Martynov, and M. I. Titov, Zh. Obshch. Khim.,38, 2337 (1968).Google Scholar
  7. 7.
    A. E. Jackson and R. A. W. Johnstone, Synthesis, 685 (1976).Google Scholar
  8. 8.
    K. Hideki and K. Hiroshi, Bull. Chem. Soc. Jpn.,50, 280 (1977).CrossRefGoogle Scholar
  9. 9.
    W. R. C. Jackson and R. A. Dwek, Mol. Immunol.18, 499 (1981).CrossRefGoogle Scholar
  10. 10.
    L. D. Yakusheva, L. A. Lyublinskaya, and V. M. Stepanov, Bioorg. Khim.,4, 1660 (1978).Google Scholar
  11. 11.
    M. Pozsgay, R. Gaspar, S. Bajusz, and P. Elödi, Eur. J. Biochem.,95, 115 (1979).CrossRefGoogle Scholar
  12. 12.
    J. Meienhofer, Nature (London),205, 735 (1965).CrossRefGoogle Scholar
  13. 13.
    G. W. Anderson, J. E. Zimmerman, and F. M. Callahan, J. Am. Chem. Soc.,86, 1839 (1964).CrossRefGoogle Scholar
  14. 14.
    K. Hofmann, W. Haas, M. J. Smithers, and C. Zametti, J. Am. Chem. Soc.,87, 631 (1965).CrossRefGoogle Scholar
  15. 15.
    S. Visser, J. Roeloffs, K. E. T. Kerling, and E. Havinga, Rec. Trav. Chim.,87, 559 (1968).CrossRefGoogle Scholar
  16. 16.
    M. Wilchek, and A. Patchornik, J. Org. Chem.,28, 1874 (1963).CrossRefGoogle Scholar
  17. 17.
    C. G. Overberger and I. Cho, J. Polym. Sci., Part A-1, 2741 (1968).CrossRefGoogle Scholar
  18. 18.
    J. Kovacs, M. Q. Ceprini, C. A. Dupraz, and G. N. Schmit, J. Org. Chem.,32, 3696 (1967).CrossRefGoogle Scholar
  19. 19.
    E. Schröder, Ann. Chem.,688, 260 (1965).CrossRefGoogle Scholar
  20. 20.
    S. Simon, S. Holban, J. Motoc, M. Mracec, C. Chiriac, F. Kerek, D. Ciubotariu, Z. Szabadai, R. D. Pop, and J. Schwartz, Stud. Biophys.,59, 181 (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • S. V. Kulikov
  • N. Yu. Sokolova
  • S. V. Rodin
  • M. A. Samartsev

There are no affiliations available

Personalised recommendations