Journal of Materials Science

, Volume 25, Issue 8, pp 3677–3682 | Cite as

Splat-quench solidification of freely falling liquid-metal drops by impact on a planar substrate

  • E. W. Collings
  • A. J. Markworth
  • J. K. McCoy
  • J. H. Saunders
Article

Abstract

Results are presented of a study of the splat-quench solidification of small, freely falling liquid drops of the alloy Nitronic 40W, which were allowed to impact on a solid, planar, horizontal substrate. The principal variable was the substrate material, with substrates of copper, alumina and fused quartz being used. The shapes of the solidified splats were correlated with a simplified model for the energetics of the splatting process and with the thermal conductivity of the substrate. The measured results are qualitatively in agreement with theoretical predictions, and suggestions are offered for a more comprehensive model of splat-quench solidification. A relationship between sessile droplet diameter and parent wire diameter is also presented and discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. L. Lacy, M. B. Robinson andT. J. Rathz,J. Crystal Growth 51 (1981) 47.Google Scholar
  2. 2.
    R. J. Bayuzick, N. D. Evans, W. F. Hofmeister, K. R. Johnson andM. B. Robinson,Adv. Space Res. 4(5) (1984) 85.Google Scholar
  3. 3.
    R. J. Bayuzick, W. H. Hofmeister andM. B. Robinson, in “Undercooled Alloy Phases”, edited by E. W. Collings and C. C. Koch (Metallurgical Society of AIME, New York, 1986) p. 207.Google Scholar
  4. 4.
    W. H. Hofmeister, M. B. Robinson andR. J. Bayuzick,Appl. Phys. Lett. 49 (1986) 1342.Google Scholar
  5. 5.
    W. Hofmeister, M. B. Robinson andR. J. Bayuzick, in “Materials Processing in the Reduced Gravity Environment of Space”, Symposium Proceedings, Vol. 87, edited by R. H. Doremus and P. C. Nordine, (Materials Research Society, Pittsburgh, 1987) p. 149.Google Scholar
  6. 6.
    J. K. McCoy, A. J. Markworth, R. S. Brodkey andE. W. Collings,ibid.in “, p. 163.Google Scholar
  7. 7.
    R. F. Cochrane, P. V. Evans andA. L. Greer,Mater. Sci. Engng 98 (1988) 99.Google Scholar
  8. 8.
    E. Gutierrez-Miravete, NASA Contractor Report 179551 (NASA-Lewis Research Center, 1986).Google Scholar
  9. 9.
    T. Gillespie andE. Rideal,J. Colloid Sci. 10 (1955) 281.Google Scholar
  10. 10.
    F. H. Harlow andJ. P. Shannon,J. Appl. Phys. 38 (1967) 3855.Google Scholar
  11. 11.
    J. Niesytto andJ. T. Niesytto, in “Proceedings of the 7th International Conference on Erosion by Liquid and Solid Impact”, edited by J. E. Field and J. P. Dear (Cavendish Laboratory, University of Cambridge, 1987) p. 3–1.Google Scholar
  12. 12.
    J. Madejski,Int. J. Heat Mass Transfer 19 (1976) 1009.Google Scholar
  13. 13.
    Idem, ibid. 26 (1983) 1095.Google Scholar
  14. 14.
    H. S. Carslaw andJ. C. Jaeger, “Conduction of Heat in Solids”, 2nd edn (Oxford University Press, Oxford, 1959) p. 290.Google Scholar
  15. 15.
    P. V. Evans andA. L. Greer,Mater. Sci. Engng 98 (1988) 357.Google Scholar
  16. 16.
    A. W. Adamson, “Physical Chemistry of Surfaces”, 4th edn (Wiley, New York, 1982) pp. 338 ff.Google Scholar
  17. 17.
    Idem, ibid. pp. 344 ff.Google Scholar
  18. 18.
    F. P. Incropera andD. P. Dewitt, “Introduction to Heat Transfer” (Wiley, New York, 1985) p. 38.Google Scholar
  19. 19.
    Lord Rayleigh,Proc. Lond. Math. Soc. 10 (1878) 4.Google Scholar
  20. 20.
    E. W. Otto, in “Aerospace Chemical Engineering”, edited by D. J. Simkin. Symposium Series No. 61, Vol. 62 (American Institute of Chemical Engineers, New York, 1966) p. 158.Google Scholar
  21. 21.
    A. W. Adamson, “Physical Chemistry of Surfaces”, 4th edn (Wiley, New York, 1982) pp. 20 ff.Google Scholar

Copyright information

© Chapman and Hall Ltd 1990

Authors and Affiliations

  • E. W. Collings
    • 1
  • A. J. Markworth
    • 1
  • J. K. McCoy
    • 1
  • J. H. Saunders
    • 1
  1. 1.Battelle Memorial InstituteColumbusUSA

Personalised recommendations