Advertisement

Journal of Materials Science

, Volume 25, Issue 8, pp 3649–3658 | Cite as

Precipitation of ultrafine powders of zirconia polymorphs and their conversion to MZrO3 (M = Ba, Sr, Ca) by the hydrothermal method

  • T. R. N. Kutty
  • R. Vivekanandan
  • Sam Philip
Article

Abstract

Ultrafine powders of ZrO2 with a high degree of crystallinity and chemical purity are hydrothermally precipitated from aqueous solutions of impure zirconyl oxychloride or the acid extract of zircon (ZrSiO4)-frit at 2 to 8 MPa and 180 to 230 ° C. Monoclinic ZrO2 is produced from aqueous hydrochloric acid, whereas tetragonal ZrO2 is formed from the same medium when sulphate ions are present with [SO 4 2− ]/[Cl−] ⩾ 0.08. If cation impurities such as Y3+ or Ce3+ are incorporated, the stability range of the tetragonal phase is extended to higher temperatures. Ultrafine powders are characterized by X-ray broadening methods, TEM and thermally as well as mechanically induced transformation characteristics. The tetragonal ZrO2 powder is constituted of polydomain crystallites with higher hydroxyl ion content than the monoclinic phase. Both series of powders convert to BaZrO3, SrZrO3 or CaZrO3 perovskites when suspended in the corresponding hydroxide solution at 190 to 480 °C and 2 to 100 M Pa.

Keywords

Zircon Perovskite Hydrothermal Method Tetragonal Phase Monoclinic Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. R. N. Kutty andR. Balachandran,Mater. Res. Bull. 19 (1984) 1479.Google Scholar
  2. 2.
    R. Vivekanandan, S. Philip andT. R. N. Kutty,ibid. 22 (1987) 99.Google Scholar
  3. 3.
    T. R. N. Kutty andR. Vivekanandan,Mater. Lett. 5 (1987) 79.Google Scholar
  4. 4.
    M. Avudaithai andT. R. N. Kutty,Mater. Res. Bull. 22 (1987) 641.Google Scholar
  5. 5.
    T. R. N. Kutty andR. Vivekanandan,ibid. 22 (1987) 1457.Google Scholar
  6. 6.
    R. Vivekanandan andT. R. N. Kutty,Ceram. Int. 14 (1988) 207.Google Scholar
  7. 7.
    Idem, Powder Technol. 57 (1989) 181.Google Scholar
  8. 8.
    T. R. N. Kutty, R. Vivekanandan andP. Murugaraj,Mater. Chem. Phys. 19 (1988) 533.Google Scholar
  9. 9.
    R. C. Garvie, R. H. J. Hannink andR. T. Pascoe,Nature 258 (1975) 703.Google Scholar
  10. 10.
    R. C. Garvie andM. V. Swain,J. Mater. Sci. 20 (1985) 1193.Google Scholar
  11. 11.
    R. W. Cypres andJ. Raucq,Ber. Deut. Keram Ges. 40 (1963) 527.Google Scholar
  12. 12.
    A. Clearfield,Inorg. Chem. 3 (1964) 146.Google Scholar
  13. 13.
    G. L. Clark andD. H. Reynolds,Ind. Eng. Chem. 29 (1937) 711.Google Scholar
  14. 14.
    E. D. Whitney,Trans. Faraday Soc. 61 (1965) 1991.Google Scholar
  15. 15.
    T. Mitsuhashi, M. Ichihara andT. Tatsuke,J. Amer. Ceram. Soc. 57 (1974) 97.Google Scholar
  16. 16.
    N. Nishizawa et al., ibid. 65 (1982) 343.Google Scholar
  17. 17.
    A. Krauth andH. Meyer,Ber. Deut. Keram. Ges. 42 (1965) 61.Google Scholar
  18. 18.
    R. C. Garvie,J. Phys. Chem. 69 (1965) 1238.Google Scholar
  19. 19.
    K. S. Mazdiyansi, C. T. Lynch andJ. S. Smith,J. Amer. Ceram. Soc. 48 (1965) 372.Google Scholar
  20. 20.
    J. E. Bailey et al., Trans. J. Brit. Ceram. Soc. 71 (1972) 25.Google Scholar
  21. 21.
    H. Rau andT. R. N. Kutty,Ber. Bunsenges. Phys. Chem. 76 (1972) 645.Google Scholar
  22. 22.
    H. Toraya, M. Yoshimura andS. Sōmiya,J. Amer. Ceram. Soc. 67 (1984) C-119.Google Scholar
  23. 23.
    G. K. Williamson andW. H. Hall,Acta Metall,1 (1953) 22.Google Scholar
  24. 24.
    G. Ziegler,Powder Met. Int. 10 (1978) 70.Google Scholar
  25. 25.
    B. E. Warren andB. L. Averbach,J. Appl. Phys. 23 (1952) 1959.Google Scholar
  26. 26.
    R. Delhez andE. J. Mittemeijer,J. Appl. Crystallogr. 9 (1979) 233.Google Scholar
  27. 27.
    A. R. Stokes,Proc. Phys. Soc. B61 (1948) 382.Google Scholar
  28. 28.
    T. K. Gupta et al., J. Mater. Sci. 12 (1977) 2421.Google Scholar
  29. 29.
    R. H. J. Hannink et al., in “Advances in Ceramics”, Vol. 3, edited by A. H. Hener and L. W. Mobbs (American Ceramic Society, Ohio, 1981) p. 116.Google Scholar
  30. 30.
    A. Clearfield andP. A. Vaughan,Acta. Crystallogr. 9 (1956) 555.Google Scholar
  31. 31.
    R. L. Angstadt andS. Y. Tyree,J. Inorg. Nucl. Chem. 24 (1962) 917.Google Scholar
  32. 32.
    E. U. Franck, in “Proceedings of the 1st International Symposium on Hydrothermal Reactions”, edited by S. Sōmiya (Associates Sci. Doc. Inf., Tokyo, 1983) p. 1.Google Scholar
  33. 33.
    J. D. Singer andD. J. Croer,Acta. Crystallogr. 12 (1959) 719.Google Scholar
  34. 34.
    A. Mumpton andR. Roy,J. Amer. Ceram. Soc. 43 (1960) 234.Google Scholar

Copyright information

© Chapman and Hall Ltd 1990

Authors and Affiliations

  • T. R. N. Kutty
    • 1
  • R. Vivekanandan
    • 1
  • Sam Philip
    • 1
  1. 1.Materials Research CentreIndian Institute of ScienceBangaloreIndia

Personalised recommendations