Advertisement

Protein patterns during final differentiation of some rat organs

  • Draško Šerman
  • Nikola Škreb
Article

Summary

  1. 1.

    Protein composition of rat brain, and of heart and skeletal muscle was analysed by polyacrylamide gel electrophoresis in their late fetal and postnatal development.

     
  2. 2.

    Adult organs show specificity of their protein patterns as judged from the relative quantitative proportions and distribution of separated protein bands.

     
  3. 3.

    Protein composition of morphologically already well defined organs in the late fetal stage of development is not changed by the event of birth and is preserved unmodified until the early neonatal period.

     
  4. 4.

    Significant developmental changes in protein composition leading to formation of adult pattern take place between the 3rd and 30th postnatal day.

     
  5. 5.

    Results and limitations of the technique applied are evaluated from the point of applicability to developmental studies.

     

Keywords

Neonatal Period Developmental Change Postnatal Development Protein Composition Developmental Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

  1. 1.

    Das Protein-Muster von Gehirn, Herz und Skelettmuskel in spätembryonalen und postnatalen Entwicklungsstadien wurde durch Polyacrylamid-Gel-Elektrophorese untersucht.

     
  2. 2.

    Adultorgane zeigen Spezifität ihrer Eiweißmuster mit Bezug auf relative Anteile und Verteilung der getrennten Eiweißbanden.

     
  3. 3.

    Die Eiweiß-Zusammensetzung von morphologisch bereits gut definierten Organen im spätembryonalen Stadium wird nicht verändert durch den Vorgang der Geburt und bleibt erhalten bis in die frühe neonatale Periode.

     
  4. 4.

    Signifikante Entwicklungsänderungen in der Eiweiß-Zusammensetzung, die zur Bildung des adulten Musters führen, finden zwischen dem 3. und 30. postnatalen Tag statt.

     
  5. 5.

    Die Ergebnisse und die Limitationen der Methode werden beurteilt mit Bezug auf Anwendbarkeit auf entwicklungsbiologische Studien.

     

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davis, B.: Disc electrophoresis. II. Method and application to human serum proteins. Ann. N. Y. Acad. Sci.121, Art 2, 404–427 (1964).Google Scholar
  2. Davison, A. N., Cuzner, M. L., Banik, N. L., Oxberry, J.: Myelinogenesis in the rat brain. Nature (Lond.)212, 1373–1374 (1966).Google Scholar
  3. Denis, H.: Recherche sur la différenciation protéique au cours du développement des Amphibiens. J. Embryol. exp. Morph.9, 422–445 (1961).Google Scholar
  4. Depieds, R., Cartouzou, G., Gignoux, H., Cartouzou, C.: Détermination de la contamination sanguine de différents organes de Lapin préalablement lavés par perfusion. Etude électrophorétique de leurs protéines solubles. C. R. Soc. Biol. (Paris)156, 1444–1449 (1962a).Google Scholar
  5. — —, Lissitzky, S., Gignoux, H., Gignoux, D.: Mise en évidence par la méthode immuno-électrophorétique de la contamination sérique de différents organes de Lapin lavés par perfusion. C. R. Soc. Biol. (Paris)156, 1450–1454 (1962b).Google Scholar
  6. Dubowitz, V.: Enzymatic maturation of skeletal muscle. Nature (Lond.)197, 1215 (1963).Google Scholar
  7. Eppenberger, H., Eppenberger, M., Richterich, R., Aebi, H.: The ontogeny of creatine kinase isozymes. Develop. Biol.10, 1–16 (1964).Google Scholar
  8. Ermini, M., Schaub, M. C.: Postnatal development of adenosine triphosphatases in red and white rat muscles. Hoppe-Seylers Z. physiol. Chem.349, 1266–1270 (1968).Google Scholar
  9. Flickinger, R. A.: Embryological development of antigens. Advanc. Immunol.2, 309–366 (1962).Google Scholar
  10. Gornall, A. G., Bardawill, C. J., David, M. M.: Determination of serum proteins by means of the biuret reaction. J. biol. Chem.177, 751–766 (1949).Google Scholar
  11. Himwich, A. W.: Biochemical and neurophysiological development of the brain in the neonatal period. Int. Rev. Neurobiol.4, 117–158 (1962).Google Scholar
  12. Lattner, A. L., Skillen, A. W.: Lactate dehydrogenase isoenzymes in fetal and neonatal tissues. J. Embryol. exp. Morph.12, 501–510 (1964).Google Scholar
  13. —: Isoenzymes in biology and medicine. New York: Academic Press 1968.Google Scholar
  14. Markert, C. L., Ursprung, H.: The ontogeny of isoenzyme patterns of lactate dehydrogenase in the mouse. Develop. Biol.5, 363–381 (1962).Google Scholar
  15. McIlwain, H.: Biochemistry and the central nervous system, 2nd edition. London: Churchill, Ltd. 1959.Google Scholar
  16. Moog, F.: Enzyme development in relation to functional differentiation. In: R. Weber (ed.), The biochemistry of animal development, vol. 1, p. 307–365. New York: Academic Press 1965.Google Scholar
  17. Ornstein, L.: Disc electrophoresis. I. Background and theory. Ann. N.Y. Acad. Sci.121, Art. 2, 321–349 (1964).Google Scholar
  18. Schapira, G., Dreyfus, J.: Electrophorèse des protéines musculaires solubles en milieu de faible force ionique. Souris normales et myopathes. C. R. Soc. Biol. (Paris)152, 1705–1707 (1958).Google Scholar
  19. Šerman, D., Škreb, N.: Electrophoretic protein patterns of some fetal and adult rat organs. Bull. Sci. Cons. Acad. R.P.F. Yougosl.11, 109–110 (1966).Google Scholar
  20. Shore, R. E.: An electrophoretic analysis of proteins of cellular sap in normal and hybrid frog embryos. J. Embryol. exp. Morph.14, 1–14 (1965).Google Scholar
  21. Solomon, J. B.: Development of nonenzymatic proteins in relation to functional differentiation. In: R. Weber (ed.), The biochemistry of animal development, vol. 1, p. 367–440. New York: Academic Press 1965.Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • Draško Šerman
    • 1
  • Nikola Škreb
    • 1
  1. 1.Institute of BiologyUniversity of ZagrebJugoslavien

Personalised recommendations