Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Strange limits of stability in host-parasitoid systems

  • 68 Accesses

  • 5 Citations

Abstract

The classical Nicholson-Bailey model for a two species host-parasitoid system with discrete generations assumes random distributions of both hosts and parasitoids, randomly searching parasitoids, and random encounters between the individuals of the two species. Although unstable, this model induced many investigations into more complex host-parasitoid systems. Local linearized stability analysis shows that equilibria of host parasitoid systems within the framework of a generalized Nicholson-Bailey model are generally unstable. Stability is only possible if host fertility does not exceede 4=54.5982 and if superparasitism is unsuccessful. This special situation has already been discovered by Hassell et al. (1983) in their study of the effects of variable sex ratios on host parasitoid dynamics. We discuss global behaviour of the Hassell-Waage-May model using KAM-theory and illustrate its sensitivity to small perturbations, which can give rise to radically different patterns of the population dynamics of interacting hosts and parasitoids.

This is a preview of subscription content, log in to check access.

References

  1. Beddington, J. R., Free, C. A., Lawton, J. H.: Dynamic complexity in predator-prey models framed in difference equations. Nature (London)255, 58–60 (1975)

  2. Beddington, J. R., Free, C. A., Lawton, J. H.: Characteristics of successful natural enemies in models of biological control of insect species. Nature (London)273, 513–519 (1978)

  3. Hassell, M. P.: The Dynamics of Arthropod Predator-Prey Systems. Princeton: Princeton University Press 1978

  4. Hassell, M. P., Anderson, R. M.: Predator-prey and host-pathogen interactions. In: Cherrett, J. M. (ed.) Ecological Concepts: The Contribution of Ecology to an Understanding of the Natural World, pp. 147–196. Oxford: Blackwell 1989

  5. Hassell, M. P., May, R. M.: Stability in insect host-parasite models. J. Anim. Ecol.42, 693–726 (1973)

  6. Hassell, M. P., May, R. M.: The Population Biology of Host-Parasite and Host-Parasitoid Associations. In: Roughgarden, J., May, R. M., Levin, S. A. (eds.) Perspectives in Ecological Theory pp. 319–347. Princeton: Princeton University Press 1989

  7. Hassell, M. P., Pacala, S. W.: Heterogeneity and the dynamics of host-parasitoid interactions. Philos. Trans. R. Soc. Lond., Ser. B330, 203–220 (1990)

  8. Hassell, M. P., Comins, H. N., May, R. M.: Spatial structure and chaos in insect population dynamics. Nature (London) 353, 255–258 (1991)

  9. Hassell, M. P., Waage, J. K., May, R. M.: Variable parasitoid sex ratios and their effect on host-parasitoid dynamics. J. Anim. Ecol.52, 889–904 (1983)

  10. Marsden, J. E., McCracken, M.: The Hopf-Bifurcation and its Application. Berlin Heidelberg New York: Springer 1976

  11. May, R. M., Hassell, M. P., Anderson, R. M., Tonkyn, D. W.: Density dependence in host-parasitoid models. J. Anim. Ecol.50, 855–865 (1981)

  12. Murray, J. D.: Mathematical Biology. Berlin Heidelberg New York: Springer 1989

  13. Nicholson, A. J., Bailey, V. A.: The balance of animal populations. Proc. Zool. Soc. Lond.1935, 551–598 (1935)

  14. Siegel, C. L., Moser, J. K.: Lectures on Celestial Mechanics. Berlin Heidelberg New York: Springer 1971

  15. Speirs, D. G., Sherratt, T. N., Hubbard, S. F.: Parasitoid Diets: Does Superparasitism Pay? TREE6 (1), 22–25 (1991)

  16. Van Alphen, J. J. M., Visser, M. E.: Superparasitism as an adaptive strategy for insect parasitoids. Annu. Rev. Entomol.35, 59–79 (1990)

  17. Van der Hoeven, N., Hemerik, L.: Superparasitism as an ESS: to Reject or not to Reject, that is the Question. J. Theor. Biol. 146, 467–482 (1990)

  18. Waage, J. K., Hassell, M. P.: Parasitoids as biological control agents — a fundamental approach. Parasitology 84, 241–268 (1982)

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Meier, C., Senn, W., Hauser, R. et al. Strange limits of stability in host-parasitoid systems. J. Math. Biology 32, 563–572 (1994). https://doi.org/10.1007/BF00573461

Download citation

Key words

  • Nicholson-Bailey model
  • KAM-theory
  • Birkhoff
  • Limit cycle