Journal of Applied Electrochemistry

, Volume 25, Issue 6, pp 519–527 | Cite as

Electrochemical codeposition of inert particles in a metallic matrix

  • A. Hovestad
  • L. J. J. Janssen


A survey on electrochemical codeposition of inert particles in a metallic matrix is given. Particles held in suspension in an electroplating bath are codeposited with the metal during electrodeposition. The particles used are inert to the bath and can be of different types, that is, pure metals, ceramics or organic materials. Combining this variety of types of particles with the different electrodeposited metals, electrochemical codeposition enables the production of a large range of composite materials with unique properties. Many experimental factors were found to influence the codeposition process, which led to some understanding of the mechanism. Models to predict the codeposition rate were developed, but were only partly successful.


Physical Chemistry Composite Material Organic Material Large Range Unique Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of symbols


constant in Tafel equation for metal deposition (V−1)

B, B1, B2

constants in Tafel equation for particle deposition (V−1)


concentration in bulk and at the cathode surface, respectively (mol m−3)


number of ions or particles per unit volume in the bulk bath (m−3)


dimensionless constant


binomial constant


double layer dimensionless number


Faraday's constant (C mol−1)


acceleration due to gravity constant (m s−2)


particle embedment dimensionless number


hydrodynamic coefficient


current density (A m−2)


exchange current density (A m−2)


transition current density (A m−2)


amount of adsorbed ions on particle that need to be reduced


Langmuir adsorption constant

k1, k2, k3

rate constants for particle deposition (m4 mol−1 s−1)


amount of ions adsorbed on a particle


molecular weight (kg mol−1)


valence of electrodeposited metal


number of ions or particles crossing the diffusion layer per unit time and surface area (s−1 m−2)


probability for an ion to be reduced


probability for a particle to become incorporated


particle radius (m)


Reynolds number


modified Sherwood number


dimensionless number for bath particle concentration


time (s)


constant for particle deposition (m s−1)


deposition rate (m s−1)


weight (kg)

Greek letters


measure of the interaction between free and adsorbed ions due to current density


volume percent of embedded particles


diffusion layer thickness (m)


ζ-potential (V)


strong adsorption coverage


solution viscosity (kg m−1 s−1)


overvoltage (V)


current efficiency


density (kg m−3)


loose adsorption coverage







particle hydrogen


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. R. Roos, J. P. Celis, J. Fransaer and C. Buelens,J. Metals 42 (1990) 60.Google Scholar
  2. [2]
    J. P. Celis, J. R. Roos, C. Buelens and J. Fransaer,Trans. Inst. Met. Finish. 69 (1991) 133.Google Scholar
  3. [3]
    C. Buelens, J. Fransaer, J. P. Celis and J. R. Roos,Bull. Electrochem. 8 (1992) 371.Google Scholar
  4. [4]
    J. Fransaer, J. P. Celis, J. R. Roos,Met. Finish. 91 (1993) 97.Google Scholar
  5. [5]
    C. G. Fink and J. D. Prince,Trans. Am. Electrochem. Soc. 54 (1928) 315.Google Scholar
  6. [6]
    J. R. Roos and J. P. Celis, Proceedings AESF'84, New York (1984) p. 1.Google Scholar
  7. [7]
    J. R. Roos, Proceedings INCEF'86, Bangalore (1988) p. 382.Google Scholar
  8. [8]
    V. P. Greco and W. Baldauf,Plating 55 (1968) 250.Google Scholar
  9. [9]
    N. Periene, A. Cesuniene and L. Taicas,Plat. Surf. Finish. 80 (1993) 73.Google Scholar
  10. [19]
    Y. S. Chang and J. Y. Lee,Mater. Chem. Phys. 20 (1988) 309.Google Scholar
  11. [11]
    A. E. Grazen,Iron Age 183 (1959) 94.Google Scholar
  12. [12]
    F. Mathis, B. Pierragi, B. Lavelle and B. Criqui, Proceedings 24th ISATA, Florence (1991) p. 171.Google Scholar
  13. [13]
    T. W. Tomaszewski, R. J. Clauss and H. Brown,Proc. Am. Electroplaters Soc. 50 (1963) 169.Google Scholar
  14. [14]
    G. N. K. Ramesh Bapu and M. Mohammed Yusuf,Mat. Chem. Phys. 36 (1993) 134.Google Scholar
  15. [15]
    S. W. Watson,J. Electrochem. Soc. 140 (1993) 2235.Google Scholar
  16. [16]
    R. V. Williams and P. W. Martin,Trans. Inst. Met. Finish. 42 (1964) 182.Google Scholar
  17. [17]
    M. Keddam, S. Senyarich, H. Takenouti and P. Bernard,J. Appl. Electrochem. 24 (1994) 1037.Google Scholar
  18. [18]
    A. Anani, Z. Mao, S. Srinivasan and A. J. Appleby,ibid. 21 (1991) 683.Google Scholar
  19. [19]
    F. K. Sautter,J. Electrochem. Soc. 110 (1963) 557.Google Scholar
  20. [20]
    N. Guglielmi,ibid. 119 (1972) 1009.Google Scholar
  21. [21]
    R. Bazard and P. J. Boden,Trans. Inst. Met. Finish. 50 (1972) 63.Google Scholar
  22. [22]
    J. P. Celis, PhD thesis, Catholic University, Leuven (1976).Google Scholar
  23. [23]
    J. P. Celis and J. R. Roos,J. Electrochem. Soc. 124 (1977) 1508.Google Scholar
  24. [24]
    R. Narayama and B. H. Narayana,ibid. 128 (1981) 1704.Google Scholar
  25. [25]
    R. Narayan and S. Chattopadhyay,Surf. Technol. 16 (1982) 227.Google Scholar
  26. [26]
    Y. Suzuki and O. Asai,J. Electrochem. Soc. 134 (1987) 1905.Google Scholar
  27. [27]
    H. Guo, Q. Qin and A. Wang,Proc.-Electrochem. Soc. 88–18 (1988) 46.Google Scholar
  28. [28]
    J. W. Graydon and D. W. Kirk,J. Electrochem. Soc. 137 (1990) 2061.Google Scholar
  29. [29]
    M. Verelst, J. P. Bonino and A. Rousset,Mat. Sci. Eng. A135 (1991) 51.Google Scholar
  30. [30]
    H. Hayashi, S. Izumi and I. Tari,J. Electrochem. Soc. 140 (1993) 362.Google Scholar
  31. [31]
    P. K. N. Bartlett, Industrial training report AKZO, Arnhem, (1980) pp. 10–39.Google Scholar
  32. [32]
    E. A. Brandes and D. Goldthorpe,Metallurgia 76 (1967) 195.Google Scholar
  33. [33]
    T. W. Tomaszewski, L. C. Tomaszewski and H. Brown,Plating 56 (1969) 1234.Google Scholar
  34. [34]
    C. C. Lee and C. C. Wan,J. Electrochem. Soc. 135 (1988) 1930.Google Scholar
  35. [35]
    A. M. J. Kariapper and J. Foster,Trans. Inst. Met. Finish. 52 (1974) 87.Google Scholar
  36. [36]
    G. R. Lakshminarayanan, E. S. Chen and F. K. Sautter,Plat. Surf. Finish. 63 (1976) 38.Google Scholar
  37. [37]
    C. Buelens, PhD thesis, Catholic University, Leuven (1984).Google Scholar
  38. [38]
    S. H. Yeh and C. C. Wan,J. Appl. Electrochem. 24 (1994) 993.Google Scholar
  39. [39]
    C. Buelens, J. P. Celis and J. R. Roos,ibid. 13 (1983) 541.Google Scholar
  40. [40]
    J. P. Celis, J. R. Roos, C. Buelens,J. Electrochem. Soc. 134 (1987) 1402.Google Scholar
  41. [41]
    B. J. Hwang and C. S. Hwang,J. Electrochem. Soc. 140 (1993) 979.Google Scholar
  42. [42]
    S. W. Watson and R. P. Walters,ibid. 138 (1991) 3633.Google Scholar
  43. [43]
    Y. Suzuki, M. Wajima and O. Asai,ibid. 133 (1986) 259.Google Scholar
  44. [44]
    P. J. Sonneveld, W. Visscher and E. Barendrecht,J. Appl. Electrochem. 20 (1990) 563.Google Scholar
  45. [45]
    D. W. Gibbons, R. H. Muller and C. W. Tobias,J. Electrochem. Soc. 138 (1991) 3255.Google Scholar
  46. [46]
    P. R. Webb and N. L. Robertson,ibid. 141 (1994) 669.Google Scholar
  47. [47]
    J. Fransaer, J. P. Celis and J. R. Roos,ibid. 139 (1992) 413.Google Scholar
  48. [48]
    J. W. Graydon and D. W. Kirk,Can. J. Chem. Eng. 69 (1991) 564.Google Scholar
  49. [49]
    K. Helle, Proceedings, 4th International Conference in Organic Coating Science and Technology, Athens (1978) 264.Google Scholar
  50. [50]
    K. Helle, Report AKZO Research, Arnhem (1993).Google Scholar
  51. [51]
    K. Meguno, T. Ushida, T. Hiraoka and K. Esumi,Bull. Chem. Soc. Jpn. 60 (1987) 89.Google Scholar
  52. [52]
    J. C. Whithers,Prod. Fin. 26 (1962) 62.Google Scholar
  53. [53]
    R. S. Saifullin and R. G. Khalilova,J. Appl. Chem. USSR. 43 (1970) 1274.Google Scholar
  54. [54]
    M. Degrez and R. Winand,Electrochem. Acta 29 (1984) 365.Google Scholar
  55. [55]
    Z. Adamczyk,Colloids and Surfaces 35 (1989) 283.Google Scholar
  56. [56]
    J. L. Valdes,J. Electrochem. Soc. 134 (1987) 223C.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • A. Hovestad
    • 1
  • L. J. J. Janssen
    • 1
  1. 1.Faculty of Chemical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations