Antonie van Leeuwenhoek

, Volume 60, Issue 2, pp 73–81

Biosynthesis of β-glucans in fungi

  • José Ruiz-Herrera
Article

Abstract

Glucans are the most abundant polysaccharides present in fungi. The present review provides updated information on the structure and synthesis of β-glucans in fungal cells. Synthesis of these polymers made up of B1,3 chains with a variable degree of B1,6 branching involves several reactions: initiation, chain elongation and branching, of which the most studied one is the elongation step. This reaction, catalyzed by the so-called glucan synthetases, utilizes UDPG as sugar donor. Properties of glucan synthetases are extremely variable depending on the fungal species, and their developmental stage. Because of the importance of these polysaccharides it is anticipated that comprehension of their mechanism of synthesis, is important for the understanding of cell wall assembly and cell growth and morphogenesis, as well as for the design of specific antifungal drugs.

Key words

cell wall fungi glucans 

Abreviations

UDPG

uridine-diphospho-glucose

GDPG

guanosine-diphospho-glucose

ADPG

adenosine-diphospho-glucose

MW

molecular weight

mic

minimal inhibitory concentration

d.p.

degree of polymerization

PAGE

polyacrylamide gel electrophoresis

SDS

sodium dodecyl sulfate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andaluz E, Guillen A, Caceres P & Larriba G (1985) Preliminary characterization of two glucan synthetase preparations and their reaction products fromCandida albicans. Microbiologia 1: 5–17Google Scholar
  2. Andaluz E, Guillen A & Larriba G (1986) Preliminary evidence for a glucan acceptor in the yeastCandida albicans. Biochem. J. 240: 495–502Google Scholar
  3. Andaluz E, Ridruejo JC, Ramirez M, Ruiz-Herrera J & Larriba G (1988) Initiation of glucan synthesis in yeast. FEMS Microbiol. Lett. 49: 251–255Google Scholar
  4. Bacon JSD, Jones D, Farmer VC & Webley DM (1968) The occurrence of α-(1–3) glucan inCryptococcus, Schizosaccharomyces andPolyporus species, and its hydrolysis by aStreptomyces culture filtrate lysing cell walls ofCryptococcus. Biochim. Biophys. Acta 158: 313–315Google Scholar
  5. Baguley BC, Rommele G, Gruner J & Wehrli W (1979) Papulacandin B: an inhibitor of glucan synthesis in yeast spheroplasts. Eur. J. Biochem. 97: 345–351Google Scholar
  6. Balint S, Farkas V & Bauer S (1976) Biosynthesis of β-glucans catalyzed by a particulate enzyme preparation from yeast. FEBS Lett. 64: 44–47Google Scholar
  7. Barker SA, Bourne EJ, O'Mant DF & Stacey M (1957) Studies ofA. niger. Part IV. The separation and structures of oligosaccharides from nigeran. J. Chem. Soc. 2448–2454Google Scholar
  8. Bartnicki-Garcia S (1968) Cell wall chemistry, morphogenesis and taxonomy of fungi. Ann. Rev. Microbiol. 22: 87–109Google Scholar
  9. Beauvais A & Latge JP (1989) Chitin and β (1–3) glucan synthase in the protoplastic entomophthorales. Arch. Microbiol. 152: 229–236Google Scholar
  10. Boone C, Sommer SS, Hensel A & Bussey H (1990) YeastKRE genes provide evidence for a pathway of cell wall β-glucan assembly. J. Cell Biol. 110: 1833–1843Google Scholar
  11. Carbonell LM, Kanetsuna F & Gil F (1970) Chemical morphology of glucan and chitin in the cell wall of the yeast phase ofParacoccidioides brasiliensis. J. Bacteriol. 101: 636–642Google Scholar
  12. Cerenius L & Soderhall K (1984) Isolation and properties of β-glucan synthetase from the aquatic fungus,Aphanomyces astaci. Physiol. Plant. 60: 247–252Google Scholar
  13. Fevre M (1983a) Nucleotide effects on glucan-synthesis activities of particulate enzymes fromSaprolegnia. Planta 159: 130–135Google Scholar
  14. — (1983b) Inhibitors of synthesis of lipid-linked saccharides also inhibit β-glucan synthesis by cell-free extracts of the fungusSaprolegnia monoica. J. Gen. Microbiol. 129: 3007–3013Google Scholar
  15. Fevre M & Dumas C (1977) β-Glucan synthetase fromSaprolegnia monoica. J. Gen. Microbiol. 103: 297–306Google Scholar
  16. Fevre M & Rougier M (1981) β-1,3- and β-1,4-Glucan synthesis by menbrane fractions from the fungusSaprolegnia. Planta 151: 232–241Google Scholar
  17. Fleet GH & Manners DJ (1976) Isolation and composition of an alkali-soluble glucan from the cell walls ofSaccharomyces cerevisiae. J. Gen. Microbiol. 94: 180–192Google Scholar
  18. Finkelman MAJ & Vardanis A (1987) Synthesis of β-glucan by cell-free extracts ofAureobasidium pullulans. Can. J. Microbiol. 33: 123–127Google Scholar
  19. Guillen A, Leal F, Andaluz E & Larriba G (1985) Endogenous factors that modulate yeast glucan synthetase in cell-free extracts. Biochim. Biophys. Acta 842: 151–161Google Scholar
  20. Hrmova M, Taft CS & Selitrennikoff CP (1989) 1,3-β-D-Glucan synthase ofNeurospora crassa: partial purification and characterization of solubilized enzyme. Exp. Mycol. 13: 129–139Google Scholar
  21. Kang MS & Cabib E (1986) Regulation of fungal cell wall growth: A guanine nucleotide-binding proteinaceous component required for activity of (1–3)-β-D-glucan synthase. Proc. Natl. Acad. Sci. USA 83: 5808–5812Google Scholar
  22. Kopecka M & Kreger DR (1986) Assembly of microfibrils in vivo and in vitro from (1 → 3)-β-D-glucan synthesized by protoplasts ofSaccharomyces cerevisiae. Arch. Microbiol. 143: 387–395Google Scholar
  23. Kreger DR & Kopecka M (1975) On the nature and formation of the fibrillar nets produced by protoplasts ofSaccharomyces cerevisiae in liquid media: An electronmicroscopic, X-ray diffraction and chemical study. J. Gen. Microbiol. 92: 207–220Google Scholar
  24. Larriba G, Morales M & Ruiz-Herrera J (1981) Biosynthesis of β-glucan microfibrils by cell-free extracts fromSaccharomyces cerevisiae. J. Gen. Microbiol. 124: 375–383Google Scholar
  25. Leal F, Ruiz-Herrera J, Villanueva JR & Larriba G (1984) An examination of factors affecting the instability ofSaccharomyces cerevisiae glucan synthetase in cell-free extracts. Arch. Microbiol. 137: 209–214Google Scholar
  26. Lopez-Romero E & Ruiz-Herrera J (1977) Biosynthesis of β-glucans by cell free extracts fromSaccharomyces cerevisiae. Biochim. Biophys. Acta 500: 372–384Google Scholar
  27. — (1978) Properties of β-glucan synthetase fromSaccharomyces cerevisiae. Ant. v. Leeuwenhoek 44: 329–339Google Scholar
  28. Manners DJ, Masson AJ & Patterson JC (1973a) The structure of a β-(1 3)-D-glucan from yeast cell walls. Biochem. J. 135: 19–30Google Scholar
  29. Manners DJ, Masson AJ, Patterson JC & Bjorndal H (1973b) The structure of a β-(1 → 6)-glucan from yeast cell walls. Biochem. J. 135: 31–36Google Scholar
  30. Meaden P, Hill K, Wagner J, Slipetz D, Sommer SS & Bussey H (1990) The yeastKRE5 gene encodes a probable endoplasmic reticulum protein required for (1 → 6)-β-D-glucan synthesis and normal cell growth. Mol. Cell. Biol. 10: 3013–3019Google Scholar
  31. Mishra NC & Tatum EL (1972) Effect of L-sorbose on polysaccharide synthetases ofNeurospora crassa. Proc. Natl. Acad. Sci. USA 69: 313–317Google Scholar
  32. Miyata M, Kanbe T & Tanaka K (1985) Morphological alterations of the fission yeastSchizosaccharomyces pombe in the presence of aculeacin A: spherical wall formation. J. Gen. Microbiol. 131: 611–621Google Scholar
  33. Mol PC & Wessels JGH (1987) Linkages between glucosaminoglycan and glucan determine alkali-insolubility of the glucans in walls ofSaccharomyces cerevisiae. FEMS Microbiol. Lett. 41: 95–99Google Scholar
  34. Notario V, Kawai H & Cabib E (1982)Interaction between yeast β-(1 → 3)-glucan synthetase and activating phosphorylated compounds. A kinetic study. J. Biol. Chem. 25: 1902–1905Google Scholar
  35. Orlean PAB (1982) (1,3)-β-Glucan synthase from budding and filamentous cultures of the dimorphic fungusCandida albicans. Eur. J. Biochem. 127: 397–403Google Scholar
  36. Orlean PAB & Ward SM (1983) Sodium fluoride stimulates (1,3)-β-D-glucan synthase fromCandida albicans. FEMS Microbiol. Lett. 18: 31–35Google Scholar
  37. Perez P, Garcia-Acha I & Duran A (1983) Effect of papulacandin B on the cell wall and growth ofGeotrichum lactis. J. Gen. Microbiol. 129: 245–250Google Scholar
  38. Quigley DR & Selitrennikoff CP (1984) β(1–3) Glucan synthase activity ofNeurospora crassa: kinetic analysis of negative effectors. Exp. Mycol. 8: 320–333Google Scholar
  39. — (1988) β(1–3) Glucan synthase activity inNeurospora crassa: reaction sequence based on kinetic evidence. Curr. Microbiol. 16: 289–293Google Scholar
  40. Reiskind JB & Mullins JT (1981) Molecular architecture of the hyphal wall ofAchlya ambisexualis Raper. I. Chemical analyses. Can. J. Microbiol. 27: 1092–1099Google Scholar
  41. Rommele G, Traxler P & Wehrli W (1983) Papulacandins. The relationship between chemical structure and effect on glucan synthesis in yeast. J. Antibiot. 36: 1539–1542Google Scholar
  42. San-Blas G (1979) Biosynthesis of glucans by subcellular fractions inParacoccidioides brasiliensis. Exp. Mycol. 3: 249–258Google Scholar
  43. San-Blas G & Carbonell LM (1974) Chemical and ultrastructural studies on the cell walls of the yeastlike and mycelial forms ofHistoplasma farciminosum. J. Bacteriol. 119: 602–611Google Scholar
  44. San-Blas G & San-Blas F (1986) Effect of nucleotides on glucan synthesis inParacoccidioides brasiliensis. J. Med. Vet. Mycol. 24: 243–245Google Scholar
  45. Sanchez-Hernandez E, Garcia-Mendoza C & Novaes-Ledieu M (1990) Chemical characterization of the hyphal walls of the basidiomyceteArmillaria mellea. Exp. Mycol 14: 178–183Google Scholar
  46. Shematek EM, Broatz JA & Cabib E (1980) Biosynthesis of the yeast wall. I. Preparation and properties of β-(1 → 3) glucan synthetase. J. Biol. Chem. 255: 888–894Google Scholar
  47. Shematek EM & Cabib E (1980) Biosynthesis of the yeast cell wall. II. Regulation of β-(1 → 3) glucan synthetase by ATP and GTP. J. Biol. Chem. 255: 895–902Google Scholar
  48. Stagg CM & Feather MS (1973) The characterization of a chitin-associated D-glucan from the cell walls ofAspergillus niger. Biochim. Biophys. Acta 320: 64–72Google Scholar
  49. Surarit R, Gopal PK & Shepherd MG (1988) Evidence for a glycosidic linkage between chitin and glucan in the cell wall ofCandida albicans. J. Gen. Microbiol. 134: 1723–1730Google Scholar
  50. Szaniszlo P, Kang MS & Cabib E (1985) Stimulation of β (1,3) glucan synthetase of various fungi by nucleoside triphosphates. A generalized regulatory mechanism for cell wall biosynthesis. J. Bacteriol. 161: 1188–1194Google Scholar
  51. Tsumuraya Y, Misaki A & Torii M (1978) A new fungal-D-glucan, elsinan, elaborated byElsinoe leucospila. Carbohyd. Res. 66: 53–65Google Scholar
  52. Varona R, Perez P & Duran A (1983) Effect of papulacandin B on β-glucan synthesis inSchizosaccharomyces pombe. FEMS Microbiol. Lett. 20: 243–247Google Scholar
  53. Wang MC & Bartnicki-Garcia S (1966) Biosynthesis of β-1,3-and β-1,6-linked glucan byPhytophthora cinnamomi cell walls. Biochem. Biophys. Res. Commun. 24: 832–837Google Scholar
  54. — (1973) Novel phosphoglucans from the cytoplasm ofPhytophthora palmivora and their selective occurrence in certain life cycle stages. J. Biol. Chem. 248: 4112–4118Google Scholar
  55. — (1974) Mycolaminarans: storage (1 → 3)-β-D-glucans from the cytoplasm of the fungusPhytophthora palmivora. Carbohyd. Res. 37: 331–338Google Scholar
  56. — (1976) Synthesis of β-1,3-glucan microfibrils by a cell-free extract fromPhytophthora cinnamomi. Arch. Biochem. Biophys. 175: 351–354Google Scholar
  57. — (1980) Distribution of mycolaminarans and cell wall β-glucans in the life cycle ofPhytophthora. Exp. Mycol. 4: 269–280Google Scholar
  58. — (1982) Synthesis of noncellulose cell-wall β-glucan by cell-free extracts from zoospores and cysts ofPhytophthora palmivora. Exp. Mycol. 6: 125–135Google Scholar
  59. Zevenhuizen LPTM & Bartnicki-Garcia S (1968) Chemical structure of the insoluble hyphal wall glucan ofPhytophthora cinnamomi. Biochemistry 8: 1496–1502Google Scholar
  60. — (1970) Structure and role of a soluble cytoplasmic glucan fromPhytophthora cinnamomi. J. Gen. Microbiol. 61: 183–188Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • José Ruiz-Herrera
    • 1
    • 2
  1. 1.Departamento de Genética y Biologia MolecularCentro de Investigación y de Estudios Avanzados del IPNIrapuatoMéxico
  2. 2.Unidad IrapuatoCentro de Investigación y de Estudios Avanzados del IPNIrapuatoMéxico

Personalised recommendations