Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Types I and III procollagen extension peptides in serum respond to fracture in humans

  • 45 Accesses

  • 43 Citations

Summary

Markers of types I and III collagen turnover were measured in serial blood samples in 16 patients with a Colles' fracture. The collagen markers were the carboxy-terminal extension peptide of type I procollagen (PICP) and the amino-terminal extension peptide of type III procollagen (PIIINP). Significant increases were found of PIIINP within 1 week and of PICP within 2 weeks. This sequential appearance of PIIINP and PICP was found to be in agreement with the appearance of types III and I collagen during early fracture healing as demonstrated in previous animal experimental studies. PICP had levelled off after 9 months, whereas PIIINP remained elevated. Osteocalcin, a serum marker of osteoblast activity, increased within 1 week and levelled off after 9 months. Correlations betwen the change in osteocalcin and those in PICP and PIIINP, respectively, were weak. These new biochemical markers may prove relevant as non-invasive markers of normal and pathological fracture healing in humans.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Einhorn T, Simon G, Devlin V, Warman J, Sidhu SPS, Vigorita VJ (1990) The osteogenic response to distant skeletal injury. J Bone Joint Surg [Am] 72:1374–1378

  2. 2.

    Gay S, Viljanto J, Raekallio J, Penttinen R (1978) Collagen types in early wound healing in children. Acta Chir Scand 144:205–211

  3. 3.

    Haukipuro K, Risteli L, Kairalouma M, Risteli J (1990) Aminoterminal propeptide of type III procollagen in serum during wound healing in human beings. Surgery 107:381–387

  4. 4.

    Johansen JS, Molholm Hansen JE, Christiansen C (1987) Radioimmunoassay for bone Gla protein (BGP) in plasma. Acta Endocrinol (Copenh) 114:410–416

  5. 5.

    Lane JM, Suda M, von der Mark K, Timpl R (1986) Immunofluorescent localization of structural collagen types in endochondral fracture repair. J Orthop Res 4:318–329

  6. 6.

    Multimaki P, Aro H, Vuorio E (1987) Differential expression of fibrillar collagen genes during callus formation. Biochem Biophys Res Commun 142:536–541

  7. 7.

    Obrant KJ, Merle B, Bejui J, Delmas PD (1990) Serum bone-Gla protein after fracture. Clin Orthop 258:300–303

  8. 8.

    Page M, Hogg J, Ashhurst DE (1986) The effects of mechanical stability on the macromolecules of the connective tissue matrices produced during fracture healing. The collagens. Histochem J 18:251–265

  9. 9.

    Parfitt AM, Simon LS, Villanueva AR, Krane S (1987) Procollagen type I extension peptide as a marker of collagen biosynthesis in bone. Correlation with iliac bone formation rates and comparison with total alkaline phosphatase. J Bone Miner Res 2:427–436

  10. 10.

    Risteli L, Risteli J (1990) Non-invasive methods for detection of organ fibrosis. In: Rojkind M (ed) Focus on connective tissue in health and disease, vol 1. CRC Press, Boca Raton, Florida, pp 61–98

  11. 11.

    Sevitt S (1971) The healing of fractures in the lower end of the radius. A histological and angiographic study. J Bone Joint Surg [Br] 53:519–531

Download references

Author information

Correspondence to S. Joerring MD.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Joerring, S., Jensen, L.T., Andersen, G.R. et al. Types I and III procollagen extension peptides in serum respond to fracture in humans. Arch Orthop Trauma Surg 111, 265–267 (1992). https://doi.org/10.1007/BF00571521

Download citation

Keywords

  • Osteocalcin
  • Serial Blood
  • Biochemical Marker
  • Fracture Healing
  • Pathological Fracture