The ultrastructure of the nauplius eye ofSapphirina (Crustacea: Copepoda)

  • Rolf Elofsson


The ultrastructure of the specialized nauplius eye of three species of the copepod genusSapphirina was investigated. The gross morphology described earlier (Elofsson, 1966a) was confirmed. The ventral cup is covered by a red pigment and the lateral cups by a red and a black pigment. The ultrastructural configuration of the pigment granules was found to differ in the two kinds of pigment cells. The black pigment cell, moreover, contains a large number of transversely banded fibrils and is able to produce reflecting crystals. The pigment granules of the black pigment cell show a variation in electron density. An intimate connexion exists between the black pigment cell and large retinula cells in the lateral cups, indicating an exchange of material. The tapetal cells present in all three cups form crystal platelets contained in two sets of membranes. It is suggested that the ventral cup and part of the lateral cups function as thePecten-eye (Land, 1965). The rhabdomeres of the retinula cells are composed of microvilli measuring 400 Å. The orientation of these seems to exclude polarotactic behaviour. The ventral cup and the four small cells of the lateral cups contain some retinula cells with microvilli arranged parallel to the incoming light. The retinula cells further develop an intricate system of membrane-invaginations penetrating deep into the cell and associated with numerous mitochondria. Retinula cells of the ventral cup and part of the lateral cups contain clear portions filled with granular material only. Retinula and other cells contain attenuated mitochondria with parallel tubuli. The proximal lens in front of each lateral cup consists of one cell. A development from the conjunctival cells is suggested. The results are evaluated in terms of function and evolution.


Fibril Granular Material Pigment Cell Intricate System Tapetal Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barber, V. C., E. M. Evans, andM. F. Land: The fine structure of the eye of the molluscPecten maximus. Z. Zellforsch.76, 295–312 (1967).Google Scholar
  2. Becher, H.: Bau und Bedeutung des Pigmentepithels der Retina. Zool. Anz., Suppl.23, 419–430 (1960).Google Scholar
  3. Brown, P. K., I. R. Gibbons, andG. Wald: The visual cells and visual pigment of the mudpuppy,Necturus. J. Cell Biol.19, 79–106 (1963).Google Scholar
  4. Copeland, D. E., andA. T. Fitzjarrell: The salt absorbing cells in the gills of the blue crab (Callinectes sapidus) with notes on modified mitochondria. Z. Zellforsch.92, 1–22 (1968).Google Scholar
  5. Eakin, R. M.: Lines of evolution of photoreceptors. In: General physiology of cell specialization (ed.D. Mazia andA. Tyler), p. 393–425. New York: McGraw-Hill 1963.Google Scholar
  6. —, andJ. L. Brandenburger: Differentiation in the eye of a pulmonate snailHelix aspera. J. Ultrastruct. Res.18, 391–421 (1967).Google Scholar
  7. —, andJ. A. Westfall: Further observations of the fine structure of some invertebrate eyes. Z. Zellforsch.62, 310–332 (1964).Google Scholar
  8. — —: Ultrastructure of the eye of the rotiferAsplanchna brightwelli. J. Ultrastruct. Res.12, 46–62 (1965).Google Scholar
  9. Eguchi, E., andT. H. Waterman: Fine structure patterns in crustacean rhabdoms. In: The functional organization of the compound eye (ed.C. G. Bernhard), p. 105–124. Oxford and New York: Pergamon Press 1966.Google Scholar
  10. —: Cellular basis for polarized light perception in the spider crab,Libinia. Z. Zellforsch.84, 87–101 (1968).Google Scholar
  11. Elofsson, R.: The nauplius eye and frontal organs in Malacostraca (Crustacea). Sarsia19, 1–54 (1965).Google Scholar
  12. —: The nauplius eye and frontal organs of the non-Malacostraca (Crustacea). Sarsia25, 1–128 (1966a).Google Scholar
  13. —: Some aspects of the fine structure of the nauplius eye ofPandalus borealis (Crustacea: Decapoda). Acta Univ. Lund., Sect. II28, 1–16 (1966b).Google Scholar
  14. Fahrenbach, W. H.: The fine structure of a nauplius eye. Z. Zellforsch.62, 182–197 (1964).Google Scholar
  15. —: The morphology of the eyes of Limulus I. Cornea and epidermis of the compound eye. Z. Zellforsch.87, 278–291 (1968).Google Scholar
  16. Gregory, R. L., H. E. Ross, andN. Moray: The curious eye ofCopilia. Nature (Lond.)201, 1166–1168 (1964).Google Scholar
  17. Jander, R.: Die Phylogenie von Orientierungsmechanismen der Arthropoden. Zool. Anz., Suppl.29, 266–306 (1966).Google Scholar
  18. Kabuta, H., Y. Tominaga, andM. Kuwabara: The rhabdomeric microvilli of several arthropod compound eyes kept in darkness. Z. Zellforsch.85, 78–88 (1968).Google Scholar
  19. Land, M. F.: Image formation by a concave reflector in the eye of the scallop,Pecten maximus. J. Physiol. (Lond.)179, 138–153 (1965).Google Scholar
  20. —: A multilayer interference reflector in the eye of the scallop,Pecten maximus. J. exp. Biol.45, 433–447 (1966).Google Scholar
  21. Melamed, J., andO. Trujillo-Cenóz: The fine structure of the visual system ofLycosa (Araneae:Lycosidae). Z. Zellforsch.74, 12–31 (1966).Google Scholar
  22. Millonig, G. J.: Advantages of a phosphate buffer for OsO4 solutions in fixation. J. appl. Phys.32, 1637 (1961).Google Scholar
  23. Moody, M. F.: Photoreceptor organelles in animals. Biol. Rev.39, 43–86 (1964).Google Scholar
  24. Press, N.: Electron microscope study of the distal portion of a planarian retinular cell. Biol. Bull.117, 511–517 (1959).Google Scholar
  25. Röhlich, P., andI. Törö: Fine structure of the compound eye ofDaphnia in normal, dark- and strongly light-adapted state. In: The structure of the eye II. Symposium (ed.J. W. Rohen), p. 175–186. Stuttgart: F. K. Schattauer 1965.Google Scholar
  26. —, u.L. J. Török: Elektronenmikroskopische Untersuchungen des Auges von Planarien. Z. Zellforsch.54, 362–381 (1961).Google Scholar
  27. — —: Die Feinstruktur des Auges der Weinbergschnecke (Helix pomatia L.). Z. Zellforsch.60, 348–368 (1963).Google Scholar
  28. Schmidt, W. J.: Altes und Neues über Strukturfarben im Tierreich. Giessener naturw. Vortr.6, 1–71 (1949).Google Scholar
  29. Schwalbach, G., K. G. Lickfeld, andM. Hahn: Der mikromorphologische Aufbau des Linsenauges der Weinbergschnecke (Helix pomatia L.). Protoplasma56, 242–273 (1963).Google Scholar
  30. Setoguti, T.: Ultrastructure of Guanophores. J. Ultrastruct. Res.18, 324–332 (1967).Google Scholar
  31. Umminger, B. L.: Polarotaxis in copepods. I. An endogenous rhythm in polarotaxis inCyclops vernalis and its relation to vertical migration. Biol. Bull.135, 239–251 (1968a).Google Scholar
  32. —: Polarotaxis in copepods. II. The ultrastructural basis and ecological significance of polarized light sensivity in copepods. Biol. Bull.135, 252–261 (1968b).Google Scholar
  33. Vaupel-von Harnack, M.: Über den Feinbau des Nervensystems des Seesternes (Asterias rubens L.). III. Mitt. Die Struktur der Augenpolster. Z. Zellforsch.60, 432–451 (1963).Google Scholar
  34. Waterman, T. H.: Polarotaxis and primary photoreceptor events in Crustacea. In: The functional organization of the compound eye (ed.C. G. Bernhard), p. 493–511. Oxford and New York: Pergamon Press 1966.Google Scholar
  35. —, andK. W. Horch: Mechanism of polarized light perception. Science154, 467–475 (1966).Google Scholar
  36. Zonana, H. V.: Fine structure of the squid retina. Bull. Johns Hopk. Hosp.109, 185–205 (1961).Google Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • Rolf Elofsson
    • 1
  1. 1.Zoological InstituteLundSweden

Personalised recommendations