Advertisement

Real-Time Systems

, Volume 1, Issue 2, pp 159–176 | Cite as

Calculating the maximum execution time of real-time programs

  • P. Puschner
  • Ch. Koza
Article

Abstract

In real-time systems, the timing behavior is an important property of each task. It has to be guaranteed that the execution of a task does not take longer than the specified amount of time. Thus, a knowledge about the maximum execution time of programs is of utmost importance.

This paper discusses the problems for the calculation of the maximum execution time (MAXT... MAximum eXecution Time). It shows the preconditions which have to be met before the MAXT of a task can be calculated. Rules for the MAXT calculation are described. Triggered by the observation that in most cases the calculated MAXT far exceeds the actual execution time, new language constructs are introduced. These constructs allow programmers to put into their programs more information about the behavior of the algorithms implemented and help to improve the self checking property of programs. As a consequence, the quality of MAXT calculations is improved significantly. In a realistic example, an improvement fator of 11 has been achieved.

Keywords

Operating System Execution Time Timing Behavior Computing Methodology Actual Execution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DarlingtonJ., and R.M.Burstall. 1978. A system which automatically improves programs. In David GriesProgramming Methodology. Springer, New York.Google Scholar
  2. EhrenbergerW. 1983. Softwarezuverlässigkeit und Programmiersprache.Regelungstechnische Praxis, 25. Jhrg., Nr. 1: 24–29.Google Scholar
  3. Fohler G., and Ch. Koza. 1989. Heuristic scheduling for distributed real-time systems.Research Report No. 6/89 (Apr.) Institut für Technische Informatik, Technical University of Vienna.Google Scholar
  4. HalangW.A. 1984. A proposal for extensions of PEARL to facilitate the formulation of hard real-time applications. Proceedings “Fachtagung Prozessrechner 1984”, Karlsruhe, Sep. 1984. Informatik-Fachberichte 86, Springer, Berlin-Heidelberg-New York-Tokyo, 1984, pp. 573–582.Google Scholar
  5. HalangW.A., 1989. A priori execution time analysis for parallel processes.Proceedings of the Euromicro Workshop on Real-Time. (Como, June), Washington, IEEE Computer Society Press.Google Scholar
  6. KernighanB.W., and D.M.Ritchie 1986. The C Programming Language. Prentice Hall, New Jersey.Google Scholar
  7. Kligerman E., and A.D. Stoyenko. Real-time Euclid: A language for reliable real-time systems.IEEE Transactions on Software Engineering, SE-12, 9 (Sept), 941–949.Google Scholar
  8. Kopetz, H., A. Damm, Ch. Koza, M. Mulazzani, W. Schwabl, Ch. Senft, and R. Zainlinger. 1989. Distributed fault-tolerant real-time systems: The MARS approach.IEEE Micro (Feb.).Google Scholar
  9. LeinbaughD.W. 1980. Guaranteed Response times in a hard-real-time environment.IEEE Transactions on Software Engineering, SE-6, 1 (Jan.), 85–91.Google Scholar
  10. Leinbaugh, D.W. and M.-R. Yamini. 1982. Guaranteed response times in a distributed hard-real-time environment.Proceedings of Real Time Systems Symposium (Dec.), IEEE Press, 157–169.Google Scholar
  11. LeinbaughD.W., and M.-R.Yamini. Guaranteed response times in a distributed hard-real-time environment. 1986.IEEE Transactions on Software Engineering, SE12, 12 (Dec.), 1139–1144.Google Scholar
  12. LiuC.L. and J.W.Layland. 1973. Scheduling algorithms for multiprogramming in a hard-real-time environment.Journal of the ACM, 20, 1 (Jan.), 46–61.Google Scholar
  13. Mork, A.K. 1984. The design of real-time programming systems based on process models.Proceedings of Real Time Systems Symposium (Dec.), IEEE Press, 5–16.Google Scholar
  14. Pflügl, M., A. Damm, and W. Schwabl. 1989. Interprocess communication in MARS.Proc. of the ITG/GI Conference on Communication in Distributed Systems (Stuttgart, Feb.).Google Scholar
  15. SenftCh., and R.Zainlinger. 1989. A graphical design environment for distributed real-time systems.Proceedings of the 22nd IEEE Conference on System Science (Kailua-Kona, Jan.), Washington, IEEE Computer Society Press, 871–880.Google Scholar
  16. Stoyenko, A.D. 1987. A real-time language with a schedulability analyzer. Technical Report CSRI-206 (Dec.), Computer Systems Research Institute, University of Toronto.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • P. Puschner
    • 1
  • Ch. Koza
    • 1
  1. 1.Institut für Technische InformatikTechnische Universität WienViennaAustria

Personalised recommendations