Molecular and General Genetics MGG

, Volume 154, Issue 3, pp 279–285 | Cite as

Gene affecting longevity of messenger RNA: A mutant ofEscherichia coli with altered mRNA stability

  • Michihiko Kuwano
  • Mayumi Ono
  • Hideya Endo
  • Katsuji Hori
  • Kunihiko Nakamura
  • Yukinori Hirota
  • Yoshinari Ohnishi


we have screened 897 temperature sensitive growth mutants ofE. coli for mutant strains showing longer mRNA half-life. The fate of pulse-labelled RNA was examined at 42° C after cessation of RNA synthesis and with prior exposure to nonpermissive temperature (42° C). Eight stains showed altered turn-over of RNA (presumably mRNA), and further analysis on mutant strain JE15144 indicated that the stability of pulse-labeled RNA as well as of tryptophan (trp) mRNA increased four to seven fold over its parental strain at 42° C. At 4 min or 10 min after addition of rifampicin, some 70 to 80% of polyribosome in the growing cells could still be conserved in JE15144 cultured at the nonpermissive temperature while little, if any, polyribosomes remained in its parental strain (PA3092) under the same condition. Two generation times were required for complete stoppage of growth of this mutant strain after shifting to 42° C, and protein synthesis continued at a significant, but slightly reduced, rate at 42° C. However, functional decay of mRNA in the mutant strain, with respect to the capacity for producing peptides, appeared to be similar to the parent strain, with half-lives of 3.5 min in PA3092 and 4.7 min in JE15144.


Tryptophan Rifampicin Mutant Strain Parental Strain mRNA Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achord, D., Kennell, D.: Metabolism of messenger RNA from thegal operon ofEscherichia coli. J. molec. Biol.90, 581–599 (1974)Google Scholar
  2. Apirion, D., Neil, J., Watson, N.: Revertants from RNase III negative strains ofEscherichia coli. Molec. gen. Genet.149, 201–210 (1976)Google Scholar
  3. Apirion, D., Watson, N.: Mapping and characterization of a mutationin Escherichia that reduces the level of ribonuclease III specific for double-stranded ribonuclei acid. J. Bact.124, 317–324 (1975)Google Scholar
  4. Bachmann, B.J., Low, K.B., Taylor, A.L.: Recalibrated linkage map ofEscherichia coli K-12. Bact. Rev.40, 116–167 (1976)Google Scholar
  5. Craig, E.: Messenger RNA metabolism when translation is blocked. Genetics70, 331–334 (1972)Google Scholar
  6. Craig, E., Cremer, K., Schlessinger, D.: Metabolism of T4 messenger RNA, host messenger RNA and ribosomal RNA in T4-infectedEscherichia coli B. J. molec. Biol.71, 701–715 (1972)Google Scholar
  7. Forchhammer, J., Jackson, E. N., Yanofsky, C.: Differentiol half-lives of messenger RNA corresponding to different segments of the tryptophan operon ofEscherichia coli. J. molec. Biol.71, 687–699 (1972)Google Scholar
  8. Godson, G.N.: A technique of rapid lysis for the preparation ofEscherichia coli polyribosomes. Methods in enzymology ed. by L. Grossman and K. Moldave, Vol. 12A, pp. 503–516 (1967)Google Scholar
  9. Gros, F., Dubert, J.M., Tissières, A., Bourgeois, S., Michelson, M., Soffer, R., Legault, L.: Regulation of metabolic breakdown and synthesis of messenger RNA in bacteria. Cold Spr. Harb. Symp. quant. Biol.28, 299–313 (1963)Google Scholar
  10. Gupta, R.S., Schlessinger, D.: Coupling rates of transcription, translation, and messenger ribonucleic acid degradation in streptomycin-dependent mutants ofEscherichia coli. J. Bact.125, 84–93 (1976)Google Scholar
  11. Gurgo, C., Craig, E., Schlessinger, D., Afolayana, A.: Polyribosome metabolism inEscherichia colistarved for an amino acid. J. molec. Biol.62, 525–535 (1971)Google Scholar
  12. Hattman, S., Hofschneider, P.H.: Interference of bacteriophage T4 in resproduction of RNA phage M12. J. molec. Biol.29, 173–190 (1967)Google Scholar
  13. Hayashi, Y., Hayashi, M.: Fraction of ϕ174 specific messenger RNA. Cold Spr. Harb. Symp. quant. Biol.35, 171–177 (1970)Google Scholar
  14. Imamoto, F.: Diversity of regulation of genetic transcription I. Effect of antibiotics which inhibit the process of translation on RNA metabolism inEscherichia coli. J. molec. Biol.74, 113–136 (1973)Google Scholar
  15. Imamoto, F., Schlessinger, D.: Bearing of some recent results on the mechanisms of polarity and messenger RNA stability. Molec. gen. Genet.135, 29–38 (1974)Google Scholar
  16. Janish, R., Jacob, E., Hofschneider, P.H.: Replication of the small coliphage M13: evidence for long-living M13 specific messenger, RNA. Nature (Lond.)227, 59–60 (1970)Google Scholar
  17. Kano, Y., Kuwano, M., Imamoto, F.: Initialtrp operon sequence inEscherichia coli is transcribed without coupling to translation. Molec. gen. Genet.146, 179–188 (1976)Google Scholar
  18. Kennell, D., Simmons, C.: Synthesis and decay of messenger ribonucleic acid from the lactose operon ofEscherichia coli during amino-acid starvation. J. molec. Biol.70, 451–464 (1972)Google Scholar
  19. Kuwano, M., Imamoto, F.: Effect of stringent and relaxed control on transcription of tryptophan operon from thePtrp promoter and theP L promoter in λtrp phage. Biochim. biophys. Acta (Amst.)454, 504–513 (1976)Google Scholar
  20. Kuwano, M., Taniguchi, H., Ono, M., Endo, H., Ohnishi, Y.: AnEscherichia coli mutant carrying altered ribosomal protein (S10). Biochim. biophys. Res. Commun.75, 156–162 (1977)Google Scholar
  21. Lennette, E.T., Apirion, D.: Genetic analysis of anEscherichia coli syndrome. J. Bact.108, 1322–1328 (1971)Google Scholar
  22. Lennox, E.S.: Transduction of linked genetic characters of the host by bacteriophage Pl. Virology1, 190–206 (1955)Google Scholar
  23. Levinthal, C., Fan, D.P., Higa, A., Zimmerman, R.A.: The decay and protection of messenger RNA in bacteria. Cold Spr. Harb. Symp. quant. Biol.28, 183–190 (1963)Google Scholar
  24. Mangiarotti, G., Schlessinger, D.: Polyribosome metabolism inEscherichia coli. II. Formation and life time of messenger RNA molecules, ribosome subunits couples and polyribosomes. J. molec. Biol.29, 395–418 (1967)Google Scholar
  25. Mangiarotti, G., Schlessinger, D., Kuwano, M.: Initiation ofrribosome-dependent breakdown of T4-specific messenger RNA. J. molec. Biol.60, 441–452 (1971)Google Scholar
  26. Marrs, B.L., Yanofsky, C.: Host and bacteriophage specific messenger RNA degradation in T7-infectedEscherichia coli. Nature (Lond.) New Biol.234, 168–170 (1971)Google Scholar
  27. Morikawa, N., Imamoto, F.: On the degradation of messenger RNA for the tryptophan operon inEscherichia coli. Nature (Lond.)223, 37–40 (1969)Google Scholar
  28. Morse, D.E.: Polarity induced by chloramphenicol and relief by SuA. J. molec. Biol.55, 113–118 (1971)Google Scholar
  29. Morse, D.E., Mosteller R.D., Yanofsky, C.: Dynamics of synthesis, Translation, and degradation oftrp operon in RNA inE. coli. Cold Spri. Harb. Symp. quant. Biol.34, 725–740 (1969)Google Scholar
  30. Ono, M., Kuwano, M., Horiuchi, T.: Genetic analysis of mutations affecting ribonuclease II inEscherichia coli. Molec. gen. Genet.153, 1–4 (1977)Google Scholar
  31. Pollock, T.J., Tessman, I.: Units of functional stability in bacteriophage messenger RNA. J. molec. Biol.108, 651–664 (1976)Google Scholar
  32. Reiner, A.M.: Genetic locus for ribonuclease I inEscherichia coli. J. Bact.97, 1522–1523 (1969)Google Scholar
  33. Schlessinger, D., Jacobs, K., Gupta, R.S., Kano, Y., Imamoto, F.: Decay of individualEscherichia coli trp mRNA molecules is sequentially ordered. J. molec. Biol.110, 421–439 (1977)Google Scholar
  34. Silengo, L., Nikolaev, N., Schlessinger, D., Imamoto, F.: Stabilization of mRNA with polar effects in anEscherichia coli mutant. Molec. gen. Genet.134, 7–19 (1974)Google Scholar
  35. Stent, G.S.: Coupled regulation of bacterial RNA and protein synthesis. Organization biosynthesis ed. by H.J. Vogel, J.O. Lampen and V. Bryson, pp. 99–109. New York: Academic Press Inc. 1967Google Scholar
  36. Studier, F.W.: Genetic mapping of a mutation that causes ribonuclease III deficiency inEscherichia coli. J. Bact.124, 307–316 (1975)Google Scholar
  37. Summers, W.C.: The process of infection with coliphage T7. J. molec. Biol.51, 671–678 (1970)Google Scholar
  38. Takeda, Y., Kuwano, M.: Synthesis and degradation of early mRNA in λ phage. Biochim. biophys. Acta (Amst.)407, 83–90 (1975)Google Scholar
  39. Vogel, H.J., Bonner, D.M.: Acetylornithinase ofEscherichia coli: partial purification and some properties. J. biol. Chem.218, 97–106 (1956)Google Scholar
  40. Wice, M., Kennell, D.: Decay of messenger RNA from the tryptophan operon ofE. coli as a function of growth temperature. J. molec. Biol.84,649–652 (1974)Google Scholar
  41. Yamada, Y., Whitaker, P.A., Nakada, D.: Function instability of T7 early mRNA. Nature (Lond.)248, 335–338 (1974)Google Scholar
  42. Yamamoto, T., Imamoto, F.: Differential stability oftrp messenger RNA synthesized originating at thetrp promoter and PL promoter of lambdatrp phage. J. molec. Biol.92, 289–309 (1975)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Michihiko Kuwano
    • 1
  • Mayumi Ono
    • 1
  • Hideya Endo
    • 1
  • Katsuji Hori
    • 2
  • Kunihiko Nakamura
    • 3
  • Yukinori Hirota
    • 4
  • Yoshinari Ohnishi
    • 5
  1. 1.Cancer Research Institute, Faculty of MedicineKyushu UniversityFukuoka
  2. 2.Division of Molecular Genetics, Department of Biology, Faculty of ScienceKyushu UniversityFukuoka
  3. 3.Department of Bacteriology, Faculty of MedicineKagoshima UniversityKagoshima
  4. 4.National Institute of GeneticsMishima
  5. 5.Department of Bacteriology, School of MedicineTokushima UniversityTokushimaJapan

Personalised recommendations