Biology and Fertility of Soils

, Volume 18, Issue 4, pp 263–278 | Cite as

Life-history tactics of soil microarthropods

  • Henk Siepel
Original Paper


A sound basis for defining life-history tactics was obtained by reviewing life-history traits. This involved an explanation of the ecological implications of thelytoky (automictic or apomictic), arrhenotoky, amphitoky, sexual reproduction, semelparity, iteroparity, seasonal iteroparity, and the relationship between semelparity and juvenile development. Several forms of synchronization of life cycles with environmental conditions were classified, ranging from the ability to overcome harsh seasonal conditions to obligate diapause dormancy. Ecologically, this involves adaptations to environmental conditions ranging from irregularly occurring and unpredictable events to regularly occurring and predictable conditions. Dispersal traits were grouped as directional migration (phoresy) and undirectional migration (anemochory). Distinctions were made between facultative and obligate phoresy and between carrier-specific and carrier-unspecific phoresy. A multi-dimensional system of tactics was outlined, based on well-defined underived traits. This system was compared with one- and two-dimensional schemes described by MacArthur and Wilson (1967), Grime (1977), and Southwood (1977) and with the multi-dimensional system described by Stearns (1976). For each tactic, relationships with the main biotopes in which it occurs were defined. Examples of species showing certain tactics were selected from the taxonomic orders of microarthropods. The generality of the traits for various groups of organisms and of the classification of life-history tactics developed was explored.

Key words

Acari Collembola Reproduction Synchronization Dispersal Tactic system Life-history traits 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allan JD (1976) Life-history patterns in zooplankton. Am Nat 110:165–180Google Scholar
  2. Athias-Binche F (1981) Écologie des uropodides édaphiques (Arachnides: Parasitiformes) de trois écosystèmes forestiers. 1. Introduction, matérial, biologie. Vie Milieu 31:137–147Google Scholar
  3. Athias-Binche F (1984) La phorésie chez les acariens uropodides (Anactinotriches), une stratégie écologique originale. Acta Oecol/Oecol Gen 5:119–133Google Scholar
  4. Barra JA, Poinsot-Balaguer N (1977) Modifications ultrastructurelles accompagnant l'anhydrobiose chez un collembole:Folsomides variabilis. Rev Ecol Biol Sol 14:189–197Google Scholar
  5. Bell G (1976) On breeding more than once. Am Nat 110:57–77Google Scholar
  6. Bhattacharyya SK (1963) A revision of the British mites of the genus Pergamasus Berlese s. lat. (Acari: Mesostigmata). Bull Br Mus (Nat Hist) Entomol 11:133–242Google Scholar
  7. Bhattacharya T, Joy VC, Joy S (1978) Studies on the effect of temperature on the development of Oppia nodosa. Entomon 3:149–155Google Scholar
  8. Binns ES (1972)Arctoseius cetratus (Sellnick) (Acarina: Ascidae) phoretic on mushroom sciarid flies. Acarologia 14:350–356Google Scholar
  9. Binns ES (1973)Digamasellus fallax Leitner phoretic on mushroom sciarid flies. Acarologia 15:10–17Google Scholar
  10. Binns ES (1974) Notes on the biology ofArctoseius cetratus (Sellnick) (Mesostigmata: Ascidae). Acarologia 16:577–582Google Scholar
  11. Binns ES (1982) Phoresy as migration — some functional aspects of phoresy in mites. Biol Rev 57:571–620Google Scholar
  12. Blancquaert J-P, Coessens R, Mertens J (1981) Life history of some Symphypleona (Collembola) under experimental conditions. I. Embryonal development and diapause. Rev Ecol Biol Sol 18:115–126Google Scholar
  13. Bongers T (1988) De nematoden van Nederland. Stichting Uitgeverij Koninklijke Nederlandse Natuurhistorische Vereniging, UtrechtGoogle Scholar
  14. Charnov EL, Schaffer WM (1973) Life history consequences of natural selection: Cole's result revisited. Am Nat 107:791–793Google Scholar
  15. Chen CN, Cheng CC, Hsiao KC (1979) Bionomics ofSteneotarsonemus spinki attacking rice plants in Taiwan. In: Rodriguez JG (ed) Recent advantages in acarology. Academic Press, New York, vol I, pp 111–117Google Scholar
  16. Chmielewski W (1970) The passage of mites through the alimentary canal of vertebrates. Ekol Pol 35:741–756Google Scholar
  17. Cole LC (1954) The population consequences of life history phenomena. Q Rev Biol 29:103–137Google Scholar
  18. Davidson J (1934) The “Lucerne flea”Sminthurus viridis L. Collembola in Australia. Bull CSIRO 79Google Scholar
  19. Desender K, Vaneechoutte M (1984) Phoretic associations of carabid beetles (Coleoptera, Carabidae) and mites (Acari). Rev Ecol Biol Sol 21:363–371Google Scholar
  20. Edwards CA, Lofty JR (1972) Biology of earthworms. Chapman and Hall, LondonGoogle Scholar
  21. Farish DJ, Axtell RC (1971) Phoresy redefined and examined inMacrocheles muscadomesticae (Acarina: Macrochelidae). Acarologia 13:16–29Google Scholar
  22. Fashing NJ (1975) Life history and general biology ofNaiadacarus arboricola Fashing, a mite inhabiting water-filled treeholes (Acarina: Acaridae). J Nat Hist 9:413–424Google Scholar
  23. Fashing NJ (1979)Naiadacarus arboricola, a “K-selected” acarid mite. In: Rodriguez JG (ed) Recent advantages in acarology. Academic Press, New York, vol I, pp 525–529Google Scholar
  24. Gerritsen J (1980) Sex and parthenogenesis in sparse populations. Am Nat 115:718–742Google Scholar
  25. Glesener RR, Tilman D (1978) Sexuality and the components of environmental uncertainty: Clues from geographic parthenogenesis in terrestrial animals. Am Nat 112:659–673Google Scholar
  26. Grandjean F (1941) Statistique sexuelle et parthénogenèse chez les Oribates (Acariens). C R Séances Acad Sci Paris 212:463–467Google Scholar
  27. Greenslade PJM (1983) Adversity selection and the habitat templet. Am Nat 122:352–365Google Scholar
  28. Greenwood PJ, Adams J (1987) The ecology of sex. Edward Arnold, LondonGoogle Scholar
  29. Griffiths DA (1964) Experimental studies on the systematics of the genusAcarus Linnaeus 1758. (Sarcoptiformes, Acarina). Acarologia 6 (fasc Hors Ser): 101–116Google Scholar
  30. Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194Google Scholar
  31. Grime JP (1979) Plant strategies and vegetation processes. John Wiley and Sons, New YorkGoogle Scholar
  32. Grime JP, Hodgson JG, Hunt R (1988) Comparative plant ecology. A functional approach to common British species. Unwin Hyman, LondonGoogle Scholar
  33. Hale WG (1965a) Observations on the breeding biology of Collembola. Pedobiologia 5:146–152, 161–177Google Scholar
  34. Hale WG (1965b) Post-embryonic development in some species in Collembola. Pedobiologia 5:228–243Google Scholar
  35. Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford University Press, OxfordGoogle Scholar
  36. Heie OE (1980) The Aphidoidea (Hemiptera) of Fennoscandia and Denmark. I. Fauna Entomologica Scandinavica, vol 9. Scandinavian Science Press, KlampenborgGoogle Scholar
  37. Helle W (1965) Population genetics of arrhenotokous mites. Boll Zool Agrar Bachicolt Ser II 7:219–225Google Scholar
  38. Helle W, Bolland HR (1967) Karyotypes and sex determination in spider mites. Genetica 38:43–53Google Scholar
  39. Hughes AM (1976) The mites of stored food and houses. Tech Bull 9, MAFF, LondonGoogle Scholar
  40. Hunter PE, Rosario RMT (1988) Associations of Mesostigmata with other arthropods. Annu Rev Entomol 33:393–417Google Scholar
  41. Hutson BR (1978) Influence of pH, temperature and salinity on the fecundity and longevity of four species of Collembola. Pedobiologia 18:163–179Google Scholar
  42. Jalil M, Rodriguez JG (1970) Studies of behaviour ofMacrocheles muscadomesticae (Acarina: Macrochelidae) with emphasis on its atraction to the house fly. Ann Entomol Soc Am 63:738–744Google Scholar
  43. Janssen GM, Joosse ENG (1987) Reproduction and growth in Collembola under laboratory conditions. Pedobiologia 30:1–8Google Scholar
  44. Jeppson LR, Keifer HH, Baker EW (1975) Mites injurious to economic plants. University of California Press, BerkeleyGoogle Scholar
  45. Joosse ENG (1969) Population structure of some surface dwelling Collembola in a coniferous forest soil. Neth J Zool 19:621–634Google Scholar
  46. Joosse ENG (1983) New developments in the ecology of Apterygota. Pedobiologia 25:217–234Google Scholar
  47. Joosse ENG, Veltkamp E (1970) Some aspects of growth, moulting and reproduction in five species of surface dwelling Collembola. Neth J Zool 20:315–328Google Scholar
  48. Joosse ENG, Verhoef HA (1974) On the aggregational habits of surface dwelling Collembola. Pedobiologia 14:245–249Google Scholar
  49. Karg W (1971) Acari (Acarina), Milben Unterordnung Anactinochaeta (Parasitiformes), Die freilebenden Gamasina (Gamasides), Raubmilben. Die Tierwelt Deutschlands 59, Gustav Fischer Verlag, JenaGoogle Scholar
  50. Karl E (1965a) Untersuchungen zur Morphologie und Oekologie von Tarsonemiden gaertnerischen Kulturpflanzen. I.Tarsonemus pallidus Banks. Biol Zentralbl 84:47–80Google Scholar
  51. Karl E (1965b) Untersuchungen zur Morphologie und Oekologie von Tarso nemiden gaertnerischen Kulturpflanzen. II.Hemitarsonemus latus (Banks),Tarsonemus confusus Ewing,T. talpae Schaarschmidt,T. setifer Ewing,T. smithi Ewing undTarsonemoides belemnitoides Weis-Fogh. Biol Zentrabl 84:331–357Google Scholar
  52. Krantz GW, Whitaker JO (1988) Mites of the genusMacrocheles (Acari: Macrochelidae) associated with small mammals in North America. Acarologia 29:225–259Google Scholar
  53. Krezal H (1959) Systematiek und Oekologie der Pyemotiden. Beitr Syst Oekol Mitteleur Acarina 1, Abschn 3:385–625Google Scholar
  54. Lindquist EE (1969) Review of holarctic tarsonemid mites (Acarina: Prostigmata) parasitizing eggs of ipine bark beetles. Mem Entomol Soc Can 60Google Scholar
  55. Lindquist EE (1975) Associations between mites and other arthropods in forest floor habitats. Can Entomol 107:425–437Google Scholar
  56. Lindquist EE (1986) The world genera of Tarsonemidae (Acari: Heterostig mata): A morphological, phylogenetic, and systematic revision, with a reclassification of family-group taxa in the Heterostigmata. Mem Entomol Soc Can 136Google Scholar
  57. Lindquist EE, Bedard WD (1961) Biology and taxonomy of mites of the genusTarsonemoides (Acarina: Tarsonemidae) parasitizing eggs of bark beetles of the genusIps. Can Entomol 93:982–999Google Scholar
  58. Luxton M (1981) Studies on the oribatid mites of a Danish beech wood soil. IV. Developmental biology. Pedobiologia 21: 312–340Google Scholar
  59. MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, PrincetonGoogle Scholar
  60. McNulty BJ (1971) An introduction to the study of acari-insect associations. Proc Entomol Nat Hist Soc 4:45–70Google Scholar
  61. Mertens J, Coessens R, Blancquaert J-P (1983) Reproduction and development ofHypogastrura viatica (Collembola) in relation to temperature and submerged conditions. Rev Ecol Biol Sol 20:567–577Google Scholar
  62. Metz LJ (1971) Vertical movement of Acarina under moisture gradients. Pedobiologia 11:262–268Google Scholar
  63. Mitchell R (1970) An analysis of dispersal in mites. Am Nat 104:425–431Google Scholar
  64. Murdoch WW (1966) Population stability and life-history phenomena. Am Nat 100:5–11Google Scholar
  65. Najt J (1983) Modifications morphologiques liées à l'écomorphose chez les collemboles Isotomidae. Pedobiologia 25:337–348Google Scholar
  66. Nannelli R (1975) Osservazioni sulla biologia diOppia concolor in condizioni sperimentali di allevamento. Redia 56:11–116Google Scholar
  67. Niijima K (1973) Experimental studies on the life-history, fecundity and growth ofSinella curviseta (Apterygota, Collembola). Pedobiologia 13:186–204Google Scholar
  68. Norton RA (1980) Observations on phoresy by orbatid mites (Acari: Oribatei). Int J Acarol 6:121–130Google Scholar
  69. Nutting WB (1964) Demodicidae — status and prognostics. Acarologia 6:441–454Google Scholar
  70. Oliver JH Jr, Tanaka K, Sawada M (1973) Cytogenetics of ticks (Acari: Ixodoidea). 12. Chromosomes and hybridization studies of bisexual and parthenogeneticHaemaphysalis longicornis races from Japan and Korea. Chromosoma 42:269–288Google Scholar
  71. Palmer SC, Norton RA (1990) Further experimental proof of thelytokous parthenogenesis in oribatid mites (Acari: Oribatida: Desmonomata). Exp Appl Acarol 8:149–159Google Scholar
  72. Pereira C, de Castro MP (1947) Forese e parthenogenese arrenotoca emMacrocheles muscadomesticae (Scopoli) (Acarina, Macrochelidae) e suan gisifacao ecologica. Arch Inst Biol Sao Paulo 18:71–89Google Scholar
  73. Petersen H (1980) Population dynamic and metabolic characterization of Collembola species in a beech forest ecosystem. In: Dindal DL (ed) Soil biology as related to land use practices. Proc VII, Int Soil Zool Colloq ISSS, Syracuse, pp 806–833Google Scholar
  74. Ruvinsky AO, Cellarius SF, Cellarius YuG (1978) The possible role of genome activity changes in the sex determination ofDaphnia pulex. Theor Appl Genet 52:269–271Google Scholar
  75. Schaarschmidt L (1959) Systematik und Oekologie der Tarsonemiden. Beitr Syst Oekol Mitteleur Acarina 1, Abschn 5:713–823Google Scholar
  76. Scheucher R (1959) Systematik und Oekologie der deutschen Anoetinen. Beitr Syst Oekol Mitteleur Acarina 1, Abschn 2:233–384Google Scholar
  77. Sharma GD, Kevan DKMcE (1963) Observations onFolsomia similis (Collembola: Isotomidae) in Eastern Canada. Pedobiologia 3:48–61Google Scholar
  78. Siepel H, De Ruiter-Dijkman E (1993) Feeding guilds of oribatid mites based on their carbohydrase activities. Soil Biol Bioch 25:1491–1497Google Scholar
  79. Skaife SH (1952) The yellow-banded carpenter bee,Mesotrichia caffra Linn., and its symbiontic mite,Dinogamasus braunsi Vitzthum. J Entomol Soc South Afr 15:63–76Google Scholar
  80. Snider RJ (1983) Observations on the oviposition, egg development and fecundity ofOnychiurus (Onychiurus) folsomi at constant temperature. Pedobiologia 25:241–252Google Scholar
  81. Sømme L (1981) Cold tolerance of alpine, arctic, and antarctic Collembola and mites. Cryobiology 18:212–220Google Scholar
  82. Southwood TRE (1962) Migration of terrestrial arthropods in relation to habitat. Biol Rev 37:171–214Google Scholar
  83. Southwood TRE (1977) Habitat, the templet for ecological strategies? J Anim Ecol 46:337–365Google Scholar
  84. Southwood TRE (1988) Tactics, strategies and templets. Oikos 52:3–18Google Scholar
  85. Springett BP (1968) Aspects of the relationship between burying beetles,Necrophorus spp. and the mitePoecilochirus necrophori Vitz. J Anim Ecol 37:417–424Google Scholar
  86. Starzyk JR, Witkowski Z (1986) Dependence of the sex-ratio of cerambycid beetles (Col., Cerambycidae) on the size of their host trees. J Appl Entomol 101:140–146Google Scholar
  87. Stearns SC (1976) Life-history tactics: A review of the ideas. Q Rev Biol 51:3–47Google Scholar
  88. Stearns SC (1992) The evolution of life histories. Oxford University Press, OxfordGoogle Scholar
  89. Stefaniak O, Seniczak S (1981) The effect of fungal diet on the development ofOppia nitens (Acari, Oribatei) and on the microflora of its alimentary tract. Pedobiologia 21:202–210Google Scholar
  90. Suomalainen E (1950) Parthenogenesis in animals. Adv Genet 3:193–253Google Scholar
  91. Suomalainen E (1962) Significance of parthenogenesis in the evolution of insects. Annu Rev Entomol 7:349–366Google Scholar
  92. Sutton SL (1972) Woodlice. Ginn and Co, LondonGoogle Scholar
  93. Sweatman GK (1971) Mites and pentastomes. In: Davis JW, Anderson RC (eds) Parasitic diseases of wild mammals. Iowa State University Press, Ames, pp 3–64Google Scholar
  94. Taberly G (1987a) Recherches sur la parthénogenèse thélytoque de deux espèces d'acariens oribates:Trhypochthonius tectorum (Berlese) etPlatynothrus peltifer (Koch). I. Acarologia 28:187–198Google Scholar
  95. Taberly G (1987b) Recherches sur la parthénogenèse thélytoque de deux espèces d'acariens oribates:Trhypochthonius tectorum (Berlese) etPlatynothrus peltifer (Koch). III. Etude anatomique, histologique et cytologique des femelles parthénogénétiques. Acarologia 28:389–403Google Scholar
  96. Taberly G (1988) Recherches sur la parthénogenèse thélytoque de deux espèces d'acariens oribates:Trhypochthonius tectorum (Berlese) etPlatynothrus peltifer (Koch). IV. Observations sur les mâles ataviques. Acarologia 29:95–107Google Scholar
  97. Tamm JC (1984) Surviving long submergence in the egg stage — a successful strategy of terrestrial arthropods living on flood plains (Collembola, Acari, Diptera). Oecologia 61:417–419Google Scholar
  98. Tanigoshi LK, Logan JA (1979) Tetranychid development under variable temperature regimes. In: Rodriguez JG (ed) Recent advantages in acarology. Academic Press, New York, vol I, pp 165–175Google Scholar
  99. Tauber MJ, Tauber CA, Masaki S (1986) Seasonal adaptations of insects. Oxford University Press, New YorkGoogle Scholar
  100. Travé J, Duran F (1971) Développment et comportement en laboratoire deNeoribates gracilis. Vie Milieu 22:79–89Google Scholar
  101. Trivers RL, Willard DE (1973) Natural selection of parental ability to vary the sex ratio of offspring. Science 179:90–91Google Scholar
  102. Van der Hammen L (1972) Spinachtigen, Arachnidea. IV. Mijten, Acarida. Algemene inleiding in de acarologie. Koninklijke Nederlandse Natuurhistorische Vereniging, WM 91, HoogwoudGoogle Scholar
  103. Van Eyndhoven GL (1964)Cheleytomorpha lepidopterum (Shaw, 1794) (=Ch. venustissima) (Acari, Cheleytidae) on Lepidoptera. Beaufortia 11:53–60Google Scholar
  104. Van Straalen NM, Joosse ENG (1985) Temperature responses of egg production and egg development in two species of Collembola. Pedobiologia 28:265–278Google Scholar
  105. Wade CF, Rodriguez JG (1961) Life history ofMacrocheles muscadomesticae (Acarina: Macrochelidae), a predator of the house fly. Ann Entomol Soc Am 54:776–781Google Scholar
  106. Wallace MMH (1970) Diapause in the aestivating egg ofHalotydeus destructor. Aust J Zool 18:295–313Google Scholar
  107. Walter DE, Hunt HW, Elliott ET (1987) The influence of prey type on the development and reproduction of some predatory soil mites. Pedobiologia 30:419–424Google Scholar
  108. Walter DE, Kaplan DT (1990) A guild of thelytokous mites (Acari: Mesostigmata) associated with citrus roots in Florida, Environ Entomol 19:1338–1343Google Scholar
  109. Walter DE, Oliver JH Jr (1989)Geolaelaps oreithyiae n. sp. (Acari; Laelapidae), a thelytokous predator of arthropods and nematodes, and a discussion of clonal reproduction in the Mesostigmata. Acarologia 30:293–303Google Scholar
  110. Webb NR (1977) Observations onSteganacarus magnus. General biology and life cycle. Acarologia 19:686–696Google Scholar
  111. Williams GC (1975) Sex and evolution. Princeton University Press, PrincetonGoogle Scholar
  112. Witteveen J, Josse ENG (1987) Growth, reproduction and mortality in marine littoral Collembola at different salinities. Ecol Entomol 12:459–469Google Scholar
  113. Woodring JP, Cook EF (1962) The biology ofCeratozetes cisalpinus Berlese,Scheloribates laevigatus Koch, andOppia neerlandica Oudemans (Oribatei), with a description of all stages. Acarologia 4:101–136Google Scholar
  114. Wrensch DL, Kethley JB, Norton RA (1994) Cytogenetics of holokinetic chromosomes and inverted meiosis: Keys to the evolutionary success of mites, with generalizations on eukaryotes. In: Houck MA (ed) Mites: ecological and evolutionary analysis of life-history patterns. Chapman & Hall, New York, pp 282–343Google Scholar
  115. Young SR, Block W (1980) Experimental studies on the cold tolerance ofAlaskozetes antarcticus. J Insect Physiol 26:189–200Google Scholar
  116. Zachvatkin AA (1959) Fauna of the U.S.S.R. Arachnoidea 6 (1) Tyroglyphoidea. Am Inst Biol Sci, WashingtonGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Henk Siepel
    • 1
  1. 1.Institute for Forestry and Nature Research (IBN-DLO)WageningenThe Netherlands

Personalised recommendations