Advertisement

Biochemical Genetics

, Volume 34, Issue 11–12, pp 443–452 | Cite as

Phylogenetic relationship among all living species of the genusBubalus based on DNA sequences of the cytochromeb gene

  • Kazuaki Tanaka
  • Chester D. Solis
  • Joseph S. Masangkay
  • Kei-ichiro Maeda
  • Yoshi Kawamoto
  • Takao Namikawa
Article

Abstract

The cytochromeb genes of all living species ofBubalus, including the river type and the swamp type of domestic buffaloes (Bubalus bubalis), were sequenced to clarify their phylogenetic relationships. These sequences were compared together with the African buffalo (Syncerus caffer) and banteng (Bos javanicus) sequences as an outgroup. Phylogenetic trees ofBubalus species based on the DNA sequences of the cytochromeb gene demonstrated that the tamaraw (Bubalus mindorensis), endemic to the Philippines, could be classified into the subgenusBubalus, not the subgenusAnoa. The divergence time between the lowland anoa (B. depressicornis) and the mountain anoa (B. quarlesi) was estimated at approximately 2.0 million years (Myr), which is almost the same as the coalescence time for theBubalus sequences. This large genetic distance supports the idea that the lowland anoa and the mountain anoa are different species. An unexpectedly large genetic distance between the river and the swamp type of domestic buffaloes suggests a divergence time of about 1.7 Myr, while the swamp type was noticed to have the closest relationship with the tamaraw (1.5 Myr). This result implies that the two types of domestic buffaloes have differentiated at the full species level.

Key words

Bubalus tamaraw anoa cytochromeb evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amano, T., Namikawa, T., and Suzuki, S. (1980). Genetic differences between swamp and river buffaloes in the electrophoretic variations of albumin and transferrin.Proc. Japan. Acad. 56463.Google Scholar
  2. Amano, T., Namikawa, T., Shotake, T., and Cyril, H. W. (1986). Blood protein polymorphisms of water buffaloes in Sri Lanka.Rep. Soc. Res. Native Livestock 11117.Google Scholar
  3. Amano, T., Miyakoshi, Y., Takada, T., Kikkawa, Y., and Suzuki, H. (1994). Genetic variants of ribosomal DNA and mitochondrial DNA between swamp and river buffaloes.Anim. Genet. 2529.Google Scholar
  4. Beintema, J. J. (1980). Primary structures of pancreatic ribonucleases fromBovidae; impala, Tomson's gazelle, nilgai and water buffalo.Biochim. Biophys. Acta 62189.Google Scholar
  5. Chikuni, K., Tabata, T., Saito, M., and Monma, M. (1994). Sequencing of mitochondrial cytochromeb genes for the identification of meat species.Anim. Sci. Technol. 65571.Google Scholar
  6. Di Berardino, D., and Iannuzzi, L. (1981). Chromosome banding homologies in swamp and Murrah buffalo.J. Hered. 72183.Google Scholar
  7. Dolan, J. M. (1965). Breeding of lowland anoa in the San Diego Zoological Garden.Z. Säugetierk. 30241.Google Scholar
  8. Felsenstein, J. (1993).PHYLIP (Phylogeny Inference Package), Version 3.5c distributed by the author, Department of Genetics, University of Washington, Seattle.Google Scholar
  9. Fischer, H., and Ulbrich, F. (1968). Chromosome of Murrah buffalo and its crossbreds with Asiatic swamp buffalo (Bubalus bubalis).Z. Tierzücht. Züchtgsbiol. 84110.Google Scholar
  10. Groves, C. P. (1969). Systematics of the anoa (Mammalia, Bovidae).Beaufortia 171.Google Scholar
  11. Groves, C. P. (1976). The origin of the mammalian fauua of Sulawesi (Cerebes).Z. Säugetierk. 41201.Google Scholar
  12. Irwin, D. M., Kocher, T. D., and Wilson, A. C. (1991). Evolution of the cytochromeb gene of mammals.J. Mol. Evol. 32128.Google Scholar
  13. Kakoi, H., Namikawa, T., Takenaka, A., Takenaka, O., Amano, T., and Martojo, H. (1994). Divergence between the anoa of Sulawesi and the Asiatic water buffaloes, inferred from their complete amino acid sequences of hemoglobin β chains.Z. Zool. Syst. Evolut.-forsch. 321.Google Scholar
  14. Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences.J. Mol. Evol. 16111.Google Scholar
  15. Klös, H.-G., and Wünschmann, A. (1972). The wild and domestic oxen. In Grzimek, B. (ed.),Grzimek's Animal Life Encyclopedia, Vol. 13. Mammals IV Van Nostrand Reinholt, New York, pp. 331–398.Google Scholar
  16. Lento, G. M., Hickson, R. E., Chambers, G. K., and Penny, D. (1995). Use of spectral analysis to test hypotheses on the origin of pinnipeds.Mol. Biol. Evol. 1228.Google Scholar
  17. Mason, I. L. (1974). Species, types and breeds. In Cockrill, W. R. (ed.),The Husbandry and Health of the Domestic Buffalo FAO, Rome, pp. 1–47.Google Scholar
  18. Momongan, V. G., and Walde, G. I. (1993). The behavioral pattern of tamaraws (Bubalus mindorensis Heude) in captivity during the dry and wet season, a study conducted under the Tamaraw Conservation Program, University of the Philippines at Los Baños, pp. 1–22.Google Scholar
  19. Morin, A. P., Moore, J. J., Chakraborty, R., Jin, L., Goodall, J., and Woodruff, S. D. (1994). Kin selection, social structure, gene flow, and the evolution of chimpanzees.Science 2651193.Google Scholar
  20. Namikawa, T., Masangkay, J. S., Maeda, K.-I., Escalada, R. F., Hirunagi, K., and Momongan, V. G. (1995). External characters and karyotypes of the captive tamaraws,Bubalus (B.) mindorensis, at the Gene Pool in the island of Mindoro, Philippines.J. Anim. Genet. 2319.Google Scholar
  21. Saitou, N., and Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees.Mol. Biol. Evol. 4406.Google Scholar
  22. Sambrook, J., Fritsch, F. E., and Maniatis, T. (1989).Molecular Cloning: A Laboratory Manual 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 9.14–9.23.Google Scholar
  23. Savage, D. E., and Russell, D. E. (1983).Mammalian Paleofaunas of the World Addison-Wesley, Reading, MA.Google Scholar
  24. Schreiber, A., Nötzold, G., and Held, M. (1993). Molecular and chromosomal evolution in anoas (Bovidae: Bubalus spec.).Z. Zool. Syst. Evolut.-forsch. 3164.Google Scholar
  25. Smith, F. M., and Patton, J. L. (1982). Variation in mitochondrial cytochromeb sequence in natural population of South American akodontine rodents (Muridae: Sigmodontinae).Mol. Biol. Evol. 885.Google Scholar
  26. Stanley, S. M. (1979).Macroevolution Freeman, San Francisco.Google Scholar
  27. Tanaka, K., Yamagata, T., Masangkay, J. S., Faruque, M. O., Dang, V.-B., Salundik, Mansjoer, S. S., Kawamoto, Y., and Namikawa, T. (1995). Nucleotide diversity of mitochondrial DNAs between the swamp and the river types of domestic water buffaloes,Bubalus bubalis, based on restriction endonuclease cleavage patterns.Biochem. Genet. 33137.Google Scholar
  28. Ulbrich, F., and Fischer, H. (1967). The chromosomes of the Asiatic buffalo (Bubalus bubalis) and the African buffalo (Syncerus caffer).Z. Tierzücht. Züchtgsbiol. 83219.Google Scholar
  29. Walker, E. P. (1975).Mammals of the World 3rd ed., The Johns Hopkins University Press, London, pp. 1424–1425.Google Scholar
  30. Zeuner, F. E. (1963).A History of Domesticated Animals Hutchinson, London.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Kazuaki Tanaka
    • 1
  • Chester D. Solis
    • 2
  • Joseph S. Masangkay
    • 2
  • Kei-ichiro Maeda
    • 1
  • Yoshi Kawamoto
    • 3
  • Takao Namikawa
    • 1
  1. 1.School of Agricultural SciencesNagoya UniversityChikusa, NagoyaJapan
  2. 2.College of Veterinary MedicineUniversity of the Philippines at Los Baños, CollegeLagunaThe Philippines
  3. 3.Primate Research Institute of Kyoto UniversityInuyama, AichiJapan

Personalised recommendations