Marine Biology

, Volume 91, Issue 2, pp 149–159 | Cite as

Lipid composition of twenty-two species of Antarctic midwater zooplankton and fish

  • S. B. Reinhardt
  • E. S. Van Vleet


Total lipids, hydrocarbons, wax esters, triacylglycerols, and phospholipids were determined for 22 major biomass species of zooplankton and fish in an Antarctic mesopelagic community that were collected in 1982 and 1983. Lipid levels were similar to levels in more temperate mesopelagic species. Total lipid concentration was depth related, with all lipid-rich species being collected at depths greater than 230 m. Wax ester content in copepods (60 to 70% of the total lipid) was generally higher than in subtropical species. Lipids indicated three predator-prey relationships (Parandania boecki-Atolla wyvillei, Thysanoessa macrura-Calanoides acutus andEurythenes gryllus-Atolla wyvillei). These were confirmed by gut content analyses. The mesopelagic fishBathylagus antarcticus, Pleuragramma antarcticum, andProtomyctophum bolini stored most lipid intramuscularly, whereasElectrona antarctica andGymnoscopelus nicholsi contained extensive stores in subcutaneous lipid sacs. The intramuscular lipids inP. antarcticum and the subcutaneous lipid sacs ofE. antarctica were primarily wax esters, possibly used for increased buoyancy or long-term energy storage. Unlike the odd-carbon preference of aliphatic hydrocarbons which typifies terrestrial plants and temperate marine organisms, even-carbon chain-length paraffins predominate in 80% of the Antarctic species analyzed. Although the source of these even-carbon n-alkanes cannot be determined from our data, their dominance in the species analyzed suggests that an unusual biochemical pathway may be responsible for their synthesis in this ecosystem.


Total Lipid Aliphatic Hydrocarbon Antarctic Species Subtropical Species Total Lipid Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Ackman, R. G. and R. P. Hansen: The occurrence of diastereomers of phytanic and pristanic acids and their determination by gas-liquid chromatography. Lipids2, 357–362 (1967)Google Scholar
  2. Ackman, R. G., C. A. Eaton, J. C. Sipos, S. N. Hooper and J. D. Castell: Lipids and fatty acids of two species of North Atlantic krill (Meganyctiphanes norvegica andThysanoessa inermis) and their role in the aquatic food web. J. Fish. Res. Bd Can.27, 513–533 (1970)Google Scholar
  3. Avigan, J. and M. Blumer: On the origin of pristance in marine organisms. J. Lipid Res.9, 350–352 (1968)Google Scholar
  4. Bienati, N. L., R. A. Comes and H. Speido: Seasonal variation and production in fertilized samples during the summer cycle.In: Polar oceans, pp 377–389. Ed. by M. J. Dunbar. Calgary, Canada: Arctic Institute of North America 1977Google Scholar
  5. Benson, A. A. and R. F. Lee: The role of wax in oceanic food chains. Sci. Am.232, 77–86 (1975)Google Scholar
  6. Blumer, M., M. M. Mullin and D. W. Thomas: Pristane in the marine environment. Helgoländer wiss. Meeresunters.10, 187–201 (1964)Google Scholar
  7. Childress, J. J. and M. H. Nygaard: The chemical composition of midwater fishes as a function of depth of occurrence off Southern California. Deep-Sea Res.20, 1093–1109 (1973)Google Scholar
  8. Childress, J. J. and M. H. Nygaard: Chemical composition and buoyancy of midwater crustaceans as a function of depth of occurrence off Southern California. Mar. Biol.27, 225–238 (1974)Google Scholar
  9. Clark, R. C. and M. Blumer: Distribution of n-paraffins in marine organisms and sediment. Limnol. Oceanogr.12, 79–87 (1967)Google Scholar
  10. Clarke, A.: The biochemical composition of krill,Euphausia superba Dana, from South Georgia. J. exp. mar. Biol. Ecol.43, 221–236 (1980)Google Scholar
  11. Cooper, J. E. and E. E. Bray: A postulated role of fatty acids in petroleum formation. Geochim. cosmochim. Acta27, 1113 to 1127 (1963)Google Scholar
  12. DeVries, A. L. and J. T. Eastman: Lipid sacs as a buoyancy adaptation in an Antarctic fish. Nature, Lond.271, 352–353 (1978)Google Scholar
  13. Eastman, J. T. and A. L. DeVries: Buoyancy adaptations in a swim-bladderless Antarctic fish. J. Morphol.167, 91–102 (1981)Google Scholar
  14. Eastman, J. T. and A. L. DeVries: Buoyancy studies of notothenoiod fishes in McMurdo Sound, Antarctica. Copeia1982, 385–393 (1982)Google Scholar
  15. Eglinton, G. and R. J. Hamilton: The distribution of alkanes.In: Chemical plant taxonomy, pp 187–217. Ed. by T. Swain. New York: Academic Press 1965Google Scholar
  16. El-Sayed, S. Z.: Biological aspects of the pack ice ecosystem.In: Symposium on Antarctic ice and water masses, pp 35–54. Ed. by G. Deocon; Brussels: Scientific Committee on Antarctic Research 1971aGoogle Scholar
  17. El-Sayed, S. Z.: Dynamics of trophic relations in the Southern Ocean.In: Research in the Antarctic, pp 73–91, Ed. by L. O. Quam. Washington D. C.: American Association for the Advancement of Science 1971bGoogle Scholar
  18. Everson, I.: Antarctic krill: a reappraisal of its distribution. Polar Rec.18, 15–23 (1976)Google Scholar
  19. Farkas, T. and S. Herodek: The effect of environmental temperature on the fatty acid composition of crustacean plankton. J. Lipid Res.5, 369–373 (1964)Google Scholar
  20. Folch, J., M. Lees and G. H. Sloane Stanley: A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem.226A, 497–509 (1956)Google Scholar
  21. Gilles, R.: Mechanisms of thermoregulation.In: Marine ecology, Vol. 2, Part 1. Physiological mechanisms, pp 251–258. Ed. by O. Kinne. New York: John Wiley and Sons 1975Google Scholar
  22. Han, J., H. W. S. Chan and M. Calvin: Biosynthesis of alkanes inNostoc muscorum. J. Am. Chem. Soc.91, 5156–5159 (1969)Google Scholar
  23. Holdgate, M. W.: The Antarctic ecosystem. Phil. Trans. R. Soc., Ser. B252, 363–383 (1967)Google Scholar
  24. Hudson, A. P., A. L. DeVries and A. E. V. Haschemeyer: Antifreeze glycoprotein biosynthesis in Antarctic fishes. Comp. Biochem. Physiol.62B, 179–183 (1979)Google Scholar
  25. Jacobs, S. S.: Physical and chemical observations in the southern oceans. USNS Eltanin cruises 16–21, 1965. Lamont Geological Observatory, Columbia University, Tech. Report No. 1-Cu-1-66 (1966)Google Scholar
  26. Johnson, R. W. and J. A. Calder: Early diagenesis of fatty acids and hydrocarbons in a salt marsh environment. Geochim. cosmochim. Acta37, 1943–1956(1973)Google Scholar
  27. Kayama, M. and Y. Ikeda: Studies on the lipids of micronektonic fishes caught in Sagami and Suruga Bays, with special reference to their wax esters. Yukagaku24, 435–440 (1975)Google Scholar
  28. Kayama, M. and H. Nakagawa: Studies on the lipids of some micronektonic shrimps caught in Sagami and Suruga Bays, with special reference to their wax esters. Yukagaku24, 441–445 (1975)Google Scholar
  29. Koons, C. B., G. W. Jamieson and L. S. Cierszko: Normal alkane distributions in marine organisms; possible significance to petroleum origin. Bull. Am. Ass. Petrol. Geol.49, 301 to 304 (1965)Google Scholar
  30. Lee, R. F.: Lipid composition of the copepodCalanus hyperboreas from the Arctic Ocean: changes with depth and season. Mar. Biol.26, 313–318 (1974)Google Scholar
  31. Lee, R. F.: Lipids of Arctic zooplankton. Comp. Biochem. Physiol.51B, 263–266 (1975)Google Scholar
  32. Lee, R. F. and J. Hirota: Wax esters in tropical zooplankton and nekton and the geographical distributions of wax esters in marine copepods. Limnol. Oceanogr.18, 227–239 (1973)Google Scholar
  33. Lee, R. F., J. Hirota and A. M. Barnett: Distribution and importance of wax esters in marine copepods and other zooplankton. Deep-Sea Res.18, 1147–1165 (1971a)Google Scholar
  34. Lee, R. F., J. C. Nevenzel and G. A. Paffenhöfer: Importance of wax esters and other lipids in the marine food chain: phytoplankton and copepods. Mar. Biol.9, 99–108 (1971b)Google Scholar
  35. Lee, R. F., J. C. Nevenzel and G. A. Paffenhöfer: The presence of wax esters in marine planktonic copepods. Naturwissenschaften,59, 406–411 (1972)Google Scholar
  36. Lee, R. F., J. Hirota, J. C. Nevenzel, R. Sauerheber and A. A. Benson: Lipids in the marine environment. Calif. mar. Res. Comm. Cal COFI Rep.16, 95–102 (1972b)Google Scholar
  37. Lewis, R. W.: Temperature and pressure effects on the fatty acids of some marine ectotherms. Comp. Biochem. Physiol.6, 75–89 (1962)Google Scholar
  38. Lewis, R. W.: Fatty acid composition of some marine animals from various depths. J. Fish. Res. Bd Can.24, 1101–1115 (1967)Google Scholar
  39. Linford, E.: Biochemical studies on marine zooplankton II: variations in the lipid content of some Mysidacea. J. Cons. Cons. int. Explor. Mer30, 16–27 (1965)Google Scholar
  40. Littlepage, J. L.: Seasonal variation in lipid content of two Antarctic marine crustacea. Actual. Sci. Ind.1312, 463–470 (1964)Google Scholar
  41. Mackie, P. R., K. J. Whittle and R. Hardy: Hydrocarbons in the marine environement I: n-alkanes in the Firth of Clyde. Estuar. cstl mar. Sci.2, 359–374 (1974)Google Scholar
  42. Morris, M. J. and T. L. Hopkins: Biochemical composition of crustacean zooplankton from the Eastern Gulf of Mexico. J. exp. mar. Biol. Ecol.69, 1–19 (1983)Google Scholar
  43. Morris, R. J. and J. R. Sargent: Studies on the lipid metabolism of some oceanic crustaceans. Mar. Biol.22, 77–83 (1973)Google Scholar
  44. Neighbors, M. A. and B. G. Nafpaktitis: Lipid compositions, water contents, swimbladder morphologies and buoyancies of nineteen species of midwater fishes (18 Myctophids and 1 Neoscopelid). Mar. Biol.66, 207–215 (1982)Google Scholar
  45. Nevenzel, J. C. and N. K. Menon: Lipids of midwater marine fish: family Gonostomatidae. Comp. Biochem. Physiol.65B, 351–355 (1980)Google Scholar
  46. Nevenzel, J. C., W. Rodegker and J. F. Mead: The lipids ofRuvettus pretiosus muscle and liver. Biochemistry4, 1589–1594 (1965)Google Scholar
  47. Nevenzel, J. C., W. Rodegker, J. S. Robinson and M. Kayama: The lipids of some lantern fishes (Family Myctophidae). Comp. Biochem. Physiol.31, 25–36 (1969)Google Scholar
  48. Patton, J. S., R. F. Lee and A. A. Benson: The presence of unusually high levels of lysophosphatidylethanolamine in a wax ester synthesizing copepod (Calanus plumchrus). Biochim. biophys. Acta270, 479–488 (1972)Google Scholar
  49. Raymont, J. E. G., J. Austin and E. Linford: Biochemical studies on marine zooplankton I: The biochemical composition ofNeomysis integer. J. Cons., Cons. int. Explor. Mer28, 354–363 (1964)Google Scholar
  50. Raymont, J. E. G., R. T. Srinivasacam and J. K. B. Raymont: Biochemical studies on marine zooplankton VII: Observations on certain deep sea zooplankton. Int. Revue Hydrobiol.54, 357–365 (1969)Google Scholar
  51. Reinhardt, S. B.: Lipid composition of Antarctic midwater organisms, 88 pp. Masters thesis, University of South Florida 1984Google Scholar
  52. Reinhardt, S. B. and E. S. Van Vleet: Hydrocarbons of Antarctic midwater organisms. Polar. Biol. (In press)Google Scholar
  53. Sargent, J. R.: The structure, metabolism and function of lipids in marine organisms.In: Biochemical and biophysical perspectives in marine biology, Vol. 3, pp 149–212. Ed. by D. C. Malins and J. R. Sargent. New York: Academic Press 1976Google Scholar
  54. Sargent, J. R. and S. Falk-Petersen: Ecological investigations on the zooplankton community in Balsfjorden, northern Norway: lipids and fatty acids inMeganyctiphanes norvegica, Thysanoessa raschi, andT. intermis during midwinter. Mar. Biol.62, 131–137 (1981)Google Scholar
  55. Sargent, J. R. and R. F. Lee: Biosynthesis of lipids in zooplankton from Saanich Inlet, British Columbia. Canada. Mar. Biol.31, 15–23 (1975)Google Scholar
  56. Sargent, J. R., R. R. Gatten and R. McIntosh: Wax esters in the marine environment: their occurrence, formation, transformation, and ultimate fates. Mar. Chem.5, 573–584 (1977)Google Scholar
  57. Smith, M. A. K. and A. E. V. Haschemeyer: Protein metabolism and cold adaptation in Antarctic fishes. Physiol. Zool.53, 373–382 (1980)Google Scholar
  58. Smith, A. E. and I. Morris: Synthesis of lipid during photosynthesis by phytoplankton of the Southern Ocean. Science, Wash., D.C.207, 197–199 (1980)Google Scholar
  59. Van Vleet, E. S. and J. G. Quinn: Early diagenesis of fatty acids and isoprenoid alcohols in estuarine and coastal sediments. Geochim. cosmochim. Acta43, 289–303 (1979a)Google Scholar
  60. Van Vleet, E. S. and J. G. Quinn: Diagenesis of marine lipids in ocean sediments. Deep-Sea Res.26A, 1225–1236 (1979b)Google Scholar
  61. Wakeham, S. G.: Organic matter from a sediment trap experiment in the equatorial North Atlantic: wax esters, steryl esters, triacylglycerols, and alkyl diacylglycerols. Geochim. cosmochim. Acta46, 2239–2257 (1982)Google Scholar
  62. Whittle, K. J., P. R. Mackie, R. Hardy, A. D. McIntyre and R. A. A. Blackman: The alkanes of marine organisms from the United Kingdom and surrounding waters. Rapp. P-V. Reun. Cons. int. Explor. Mer171, 72–78 (1977)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • S. B. Reinhardt
    • 1
  • E. S. Van Vleet
    • 1
  1. 1.Department of Marine ScienceUniversity of South FloridaSt. PetersburgUSA

Personalised recommendations