Advertisement

Journal of Materials Science

, Volume 14, Issue 7, pp 1624–1630 | Cite as

The synthesis of ultrafine titanium nitride in an r.f. plasma

  • Toyonobu Yoshida
  • Akihisa Kawasaki
  • Kunihiko Nakagawa
  • Kazuo Akashi
Papers

Abstract

The ultrafine titanium nitride particles with a statistical median size of about 10 nm were prepared by passing pure titanium powder (<25 μm) through a radio-frequency (r.f.) argon-nitrogen plasma. The effects of the [N2]/[Ti] molar ratio of the reactant on the nature of the products were investigated by chemical analysis, X-ray diffraction and electron microscopy. The conversion efficiency was close to 100%. The colour of the product was black, which is attributed to the particle size ranging from 5 to 150 nm. Most of the crystallites were single crystal and showed clear-cut habits of cubic phase. The chemical composition and lattice parameter of the products changed with the [N2]/[Ti] ratio. The thermodynamics of the process were also considered. These results provide evidence to suggest that new materials can be produced by an r.f. plasma process, in particular, the ultrafine refractory nitrides.

Keywords

Colour Polymer Particle Size Microscopy Electron Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. M. Powell, W. Stocpol andM. Tinkham,J. Appl. Phys. 48 (1977) 788.Google Scholar
  2. 2.
    A. Schneider, R. Gehrke, M. Kretschmer andM. Wassermann,Metall. 23 (1969) 230.Google Scholar
  3. 3.
    J. Hojo, O. Iwamoto, Y. Maruyama andA. Kato,J. Less-Common Metals 53 (1977) 265.Google Scholar
  4. 4.
    B. Waldie,Chem. Eng. 259 (1972) 92.Google Scholar
  5. 5.
    R. Mahe, ″Les Hautes Températures et leurs Utilizations en Physique et en Chimie″, Vol. 1, edited by G. Chaudron and F. Trombe (Masson and Cie., Paris, 1973) p. 139.Google Scholar
  6. 6.
    V. N. Troitskii, B. M. Grebtsov andM. I. Aivazov,Sov. Powder Met. Metal Ceram. 12 (1974) 869.Google Scholar
  7. 7.
    I. M. Mackinnon andB. G. Reuben,J. Electrochem. Soc. 122 (1975) 806.Google Scholar
  8. 8.
    J. Canteloup andA. Mocellin, ″Special Ceramics 6″, edited by P. Popper (B. Ceram. R. A., Stoke-on-Trent, 1975) p. 209.Google Scholar
  9. 9.
    JANAF Thermochemical Tables (Dow Chemical Company, Midland Michigan, 1970).Google Scholar
  10. 10.
    K. D. Carlson, C. R. Claydon andC. Moser,J. Chem. Phys. 46 (1967) 4963.Google Scholar
  11. 11.
    C. A. Stearns andF. J. Kohl,High Temp. Sci. 2 (1970) 146.Google Scholar
  12. 12.
    W. H. Drawin andP. Felenbok, ″Data for plasmas in local thermodynamic equilibrium″ (Ganthier-Villars, Paris, 1965).Google Scholar
  13. 13.
    R. C. Miller andR. J. Ayen,J. Appl. Phys. 40 (1969) 5260.Google Scholar
  14. 14.
    T. Yoshida andK. Akashi,ibid 48 (1977) 2252.Google Scholar
  15. 15.
    T. B. Reed,ibid 32 (1961) 821.Google Scholar
  16. 16.
    R. Giovanelli,ibid 41 (1970) 3194.Google Scholar
  17. 17.
    W. B. Pearson, (ED), ″Handbook of lattice spacings and structures of metals″, Vol. 2 (Pergamon, London, 1967) p. 455.Google Scholar
  18. 18.
    A. N. Christensen,Acta Chem. Scand. A29 (1975) 563.Google Scholar
  19. 19.
    R. Lacmann andG. M. Pound,Z. Phys. Chem. (N.F.) 53 (1967) 143.Google Scholar
  20. 20.
    J. J. Nickl, K. Schweitzer andA. Hahlweg,J. Less-Common Metals 51 (1977) 235.Google Scholar

Copyright information

© Chapman and Hall Ltd 1979

Authors and Affiliations

  • Toyonobu Yoshida
    • 1
  • Akihisa Kawasaki
    • 1
  • Kunihiko Nakagawa
    • 1
  • Kazuo Akashi
    • 1
  1. 1.Department of Metallurgy and Materials Science, Faculty of EngineeringThe University of TokyoTokyoJapan

Personalised recommendations