Journal of Nondestructive Evaluation

, Volume 6, Issue 2, pp 87–100 | Cite as

Photothermal radiometric detection and imaging of surface cracks

  • Irving Kaufman
  • Pan-Tze Chang
  • Hsueh-Shun Hsu
  • Wen-Yuan Huang
  • Daw-Yang Shyong


This paper discusses surface crack detection by photothermal radiometric imaging (PRI). In PRI, also called dynamic infrared scanning, a surface is scanned with a spot of heat. Imperfections are detected by radiometrically sensing changes in the surface temperature of a small area in the vicinity of this spot. In the work described, cracks narrower than 25 µm (0.001 in.) in a lightly rusted steel surface have been detected. Indiscrete scanning an amplitude modulated heating beam is moved in steps, remaining at each location long enough to measure amplitude and phase of the AC temperature. Incontinuous scanning a constant intensity heating beam is moved continuously while the temperature deviations are measured. This paper presents methods of calculating amplitude and phase of surface temperature for discrete scanning and instantaneous temperature for continuous scanning across a surface crack. For a steel surface scanned by a watt-level laser beam, predicted surface temperature deviations when crossing the crack are several degrees Celsius, with expected radiometrically detected power several orders of magnitude above the detector noise. In experiments performed, both techniques easily detected narrow cracks in a smooth, clean surface. Discolorations and pits, on the other hand, generate a disturbing type of “surface noise.” This noise was minimized by differential detection. Based on results obtained, continuously scanned PRI with a fan-type heating beam and array detection could become a viable way of mapping surface cracks at practical scanning speeds.

Key words

Photothermal imaging radiometric measurement infrared scanning crack detection crack mapping moving spot of heat surface temperature differential detection laser heating 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. R. Green, Principles and applications of emittance-independent infrared nondestructive testing,Appl. Optics 7:1779–1789 (1968).Google Scholar
  2. 2.
    D. R. Maley and G. J. Posakony, A thermal scanning technique for nondestructive testing,Proc. Fourth Annual Symposium on Nondestructive Testing of Aircraft and Missile Components (Feb. 26–28, 1963, San Antonio, Texas, pp. 11–51.Google Scholar
  3. 3.
    E. J. Kubiak, Infrared detection of fatigue cracks and other near-surface defects,Appl. Optics 7:1743–1747 (1968).Google Scholar
  4. 4.
    Allen Rosencwaig,Photoacoustics and Photoacoustic Spectroscopy (John Wiley & Sons, New York, 1980).Google Scholar
  5. 5.
    P. E. Nordal and S. O. Kanstad, Photothermal radiometry,Physica Scripta (Sweden)20:659–662 (1979).Google Scholar
  6. 6.
    Allan Rosencwaig, Thermal wave microscopy with photoacoustics,J. Appl. Phys. 51:2210–2211 (1980).Google Scholar
  7. 7.
    M. Luukkala, Photoacoustic microscopy at low modulation frequencies, in E. A. Ash (ed.),Scanned Image Microscopy (Academic Press, New York, 1980).Google Scholar
  8. 8.
    R. L. Thomas, J. J. Pouch, Y. H. Wong, L. D. Favro, P. K. Kuo, and Allan Rosencwaig, Subsurface flaw detection in metals by photoacoustic microscopy,J. Appl. Phys. 51:1152–1156 (1980).Google Scholar
  9. 9.
    J. C. Murphy and L. C. Aamodt, Optically detected photothermal imaging,Appl. Phys. Lett. 38:196–198 (1981).Google Scholar
  10. 10.
    Gerd Busse, Optoacoustic and photothermal material inspection techniques,Applied Optics 21:107–110 (1982).Google Scholar
  11. 11.
    Allan Rosencwaig, Thermal wave imaging,Science 218:223–228 (1982).Google Scholar
  12. 12.
    S. M. De Almeida and B. K. Hinds, Finite difference solution to the problem of temperature distribution under a moving heat source, using the concept of a quasi-stationary state.Numerical Heat Transfer 6:17–27 (1983).Google Scholar
  13. 13.
    M. Lax, Temperature rise induced by a laser beam,J. Appl. Phys. 48:3919–3924 (1977).Google Scholar
  14. 14.
    D. Rosenthal, The theory of moving sources of heat and its application to metal treatments,Transactions of the A.S.M.E. 68:849–866 (1946).Google Scholar
  15. 15.
    H. S. Carslaw and J. C. Jaeger,Conduction of Heat in Solids, Second Edition (Clarendon Press, Oxford, 1959), pp. 266–270.Google Scholar
  16. 16.
    Boris Podolsky, A problem in heat conduction,J. Appl. Phys. 22:581–585 (1951).Google Scholar
  17. 17.
    R. H. Ritchie, The temperature function in a moving medium,J. Appl. Phys. 22:1389 (1951).Google Scholar
  18. 18.
    J. E. Moody and R. H. Hendel, Temperature profiles induced by a scanning cw laser beam,J. Appl. Phys. 53:4364–4371 (1982).Google Scholar
  19. 19.
    P. K. Khandelwal, P. W. Heitman, A. J. Silversmith, and T. D. Wakefield, Surface flaw detection in structural ceramics by scanning photoacoustic spectroscopy,Appl. Phys. Lett. 39:779–781 (1980).Google Scholar
  20. 20.
    K. R. Grice, L. J. Inglehart, L. D. Favro, P. K. Kuo, and R. L. Thomas, Thermal wave imaging of cracks in metals,J. Physique 44:C6-519–C6-524 (1983).Google Scholar
  21. 21.
    R. L. Thomas, L. D. Favro, K. R. Grice, L. J. Inglehart, P. K. Kuo, J. Lhota, and Gerd Busse, Thermal wave imaging for nondestructive evaluation,Proceedings of 1982 IEEE Ultrasonics Symposium, pp. 586–590.Google Scholar
  22. 22.
    J. D. Birkeland,A Photothermal Radiometer for Concentration Solar Cell Measurement (M. S. Thesis, Arizona State Univ., Dec. 1985).Google Scholar
  23. 23.
    W. N. Reynolds, Thermographic methods applied to industrial materials,Can. J. Phys. 64:1150–1154 (1986).Google Scholar
  24. 24.
    D. M. Heath, C. S. Welch, W. P. Winfree, J. S. Heyman, and W. E. Miller, Quantitative thermal diffusivity measurements of composites, in D. O. Thompson and D. E. Chimenti (eds.)Review of Progress in Quantitative Nondestructive Evaluation, (Plenum Publishing Corp., New York, 1986), Vol. 5B, pp. 1125–1132.Google Scholar
  25. 25.
    C. S. Welch, D. M. Heath, and W. P. Winfree, Quantitative thermal characterization of thin plates, in D. O. Thompson and D. E. Chimenti (eds.)Review of Progress in Quantitative Nondestructive Evaluation, (Plenum Publishing Corp., New York, 1986), Vol. 5B, pp. 1133–1139.Google Scholar
  26. 26.
    K. R. Grice, L. J. Inglehart, L. D. Favro, P. K. Kuo, and R. L. Thomas, Thermal wave imaging of closed cracks in opaque solids,J. Appl. Phys. 54:6245–6255 (1983).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • Irving Kaufman
    • 1
  • Pan-Tze Chang
    • 1
  • Hsueh-Shun Hsu
    • 1
  • Wen-Yuan Huang
    • 1
  • Daw-Yang Shyong
    • 1
  1. 1.Department of Electrical and Computer EngineeringArizona State UniversityTempe

Personalised recommendations