Chemistry of Natural Compounds

, Volume 17, Issue 3, pp 284–287 | Cite as

Investigation of the influence of intramolecular electrostatic interactions on the conformational equilibrium in pyrimidine nucleosides by the PMR method

  • É. L. Kupche


The influence of solvents on the PMR spectra of uridine and cytidine has been studied. Because of intramolecular electrostatic interactions (IEIs) between the 2-keto oxygen and the freely rotating 2-hydroxyl, the position of the conformational equilibrium in the pyrimidine nucleosides but not in purine and deoxy nucleosides, depends substantially on the dielectric constant of the solvent and the size of the partial negative charge on the 2-keto oxygen of the base. It has been shown that an increase in the IEI leads to an increase in the 3′-endo (N) population of the ribose ring and to an increased influence of the temperature on the state of the conformational equilibrium.


Nucleoside Uridine Cytidine Dielectric Constant Purine Nucleoside 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    M. MacCoss, F. S. Ezra, M. J. Robins, and S. S. Danyluk, J. Am. Chem. Soc.,99, 7495 (1977).CrossRefGoogle Scholar
  2. 2.
    C. Altona and M. Sundaralingam, J. Am. Chem. Soc.,95, 2333 (1973).CrossRefGoogle Scholar
  3. 3.
    R. J. Abraham and E. Bertschneider, in: The Internal Rotation of Molecules, W. J. Orville-Thomas, ed., Wiley, London (1974), pp. 481–584.Google Scholar
  4. 4.
    C. Altona and M. Sundaralingam, J. Am. Chem. Soc.,94, 8205 (1972).CrossRefGoogle Scholar
  5. 5.
    V. G. Dashevskii, The Conformations of Organic Molecules [in Russian], Moscow (1974), p. 75.Google Scholar
  6. 6.
    K. N. Fang, N. K. Kando, P. S. Miller, and P. O. P. Ts'o, J. Am. Chem. Soc.,93, 6647 (1971).CrossRefGoogle Scholar
  7. 7.
    N. K. Kochetkov, E. I. Budovskii, E. D. Sverdlov, M. F. Simukova, N. F. Turginskii, and V. N. Shibaev, The Organic Chemistry of Nucleic Acids [in Russian], Moscow (1970), p. 153.Google Scholar
  8. 8.
    D. S. Davies and S. S. Danyluk, Can J. Chem.,48, 3112 (1970).CrossRefGoogle Scholar
  9. 9.
    R. Deslauriers and I. C. P. Smith, Can. J. Chem.,51, 833 (1973).CrossRefGoogle Scholar
  10. 10.
    E. L. Kupche, Khim. Prir. Soedin., No. 3, p. 358 (1981) [in this issue].Google Scholar
  11. 11.
    W. Egan, S. Forsen, and J. Jacobus, Biochemistry,14, 735 (1975).CrossRefGoogle Scholar
  12. 12.
    D. B. Davies and A. Rabczenko, J. Chem. Soc., Perkin Trans.,2, 1703 (1975).CrossRefGoogle Scholar
  13. 13.
    D. J. Wood, R. J. Mynott, F. E. Hruska, and R. H. Sarma, FEBS Lett.,34, 323 (1973).CrossRefGoogle Scholar
  14. 14.
    F. E. Hruska, A. A. Smith, and J. G. Dalton, J. Am. Chem. Soc.,93, 4334 (1971).CrossRefGoogle Scholar
  15. 15.
    É. L. Kupche and U. Ya. Mikstais, Khim. Geterotskil. Soedin.,11, 1550 (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • É. L. Kupche

There are no affiliations available

Personalised recommendations