Journal of Nondestructive Evaluation

, Volume 10, Issue 4, pp 159–166 | Cite as

One-sided ultrasonic inspection technique for the elastic constant determination of advanced anisotropic materials

  • Joseph L. Rose
  • John J. Ditri
  • Yimei Huang
  • Dattatraya P. Dandekar
  • Shun-Chin Chou
Article

Abstract

The subject of anisotropic elastic constant determination with a practical one-sided, multi-mode ultrasonic technique is presented along with comparisons with a more traditional cube cutting technique. Results are presented for destructive static compression tests as well. The Young's Moduli calculated from the measured ultrasonic velocity measurements are shown to compare favorably with those obtained from destructive static compression tests. Limitations of the one-sided method are discussed and further research efforts are also suggested.

Key words

Composites anisotropic elastic moduli single-sided access Rayleigh waves 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. Hashin,J. Appl. Mech. 143–150 (March 1962).Google Scholar
  2. 2.
    J. Aboudi,Int. J. Eng. Sci. 20(5):605–621 (1982).Google Scholar
  3. 3.
    J. D. Achenbach,Arch. Mech. 28(3):257–278 (1976).Google Scholar
  4. 4.
    J. E. Zimmer, and J. R. Cost,J. Acoust. Soc. Am. 47(3):795–803 (1970).Google Scholar
  5. 5.
    T. R. Tauchert, and A. N. Guzelsu,J. Appl. Mech. 39:98–102 (1972).Google Scholar
  6. 6.
    W. Sachse,J. Comp. Mater. 8:378–390 (1974).Google Scholar
  7. 7.
    E. P. Papadakis, P. Thadd, Y. Tsai, D. O. Thompson, and R. B. Thompson.J. Acoust. Soc. Am. 89(6):2753–2757 (1991).Google Scholar
  8. 8.
    B. A. Auld,Acoustic Fields and Waves in Solids, 2nd Ed., Vol. I (John Wiley and Sons, 1990), p. 164.Google Scholar
  9. 9.
    J. L. Rose, A. Pilarski, and Y. Huang,Research in Nondestructive Evaluation, Vol. 1 (Springer Verlag, 1990), pp. 247–265.Google Scholar
  10. 10.
    M. R. Karim, and A. K. Mal,Review of Progress in Quantitative Nondestructive Evaluation, Vol. 9, (New York, Plenum Press, 1990), pp. 109–116.Google Scholar
  11. 11.
    S. I. Rokhlin, C. Y. Wu, and L. Wang,Review of Progress in Quantitative Nondestructive Evaluation, Vol. 9, (New York, Plenum Press, 1990), pp. 1403–1410.Google Scholar
  12. 12.
    B. Hosten, and M. Deschamps,J. Acoust. Soc. Am. 82(5):1763–1770 (1987).Google Scholar
  13. 13.
    P. A. Doyle, and C. M. Scala,Review of Progress in Quantitative Nondestructive Evaluation, Vol. 10, (New York, Plenum Press, 1991).Google Scholar
  14. 14.
    A. G. Every, and W. Sachse,Ultrasonics 30(1):43–48 (1992).Google Scholar
  15. 15.
    Hercules data sheet on IM7/8551-7 prepreg tape.Google Scholar
  16. 16.
    L. E. Malvern,Introduction to the Mechanics of a Continuous Medium, Prentice Hall, New Jersey, (1969), pp. 281–282.Google Scholar
  17. 17.
    J. L. Rose, J. J. Ditri, and J. Zhang,Proceedings of the ASNT Annual Fall Conference (Sept 15–18, 1991), pp. 53–55.Google Scholar
  18. 18.
    A. E. H. Love,A Treatise on the Mathematical Theory of Elasticity, 4th Ed. (Dover Publications, 1944), p. 161.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • Joseph L. Rose
    • 1
  • John J. Ditri
    • 2
  • Yimei Huang
    • 2
  • Dattatraya P. Dandekar
    • 3
  • Shun-Chin Chou
    • 3
  1. 1.Department of Engineering Science and MechanicsThe Pennsylvania State UniversityUniversity Park
  2. 2.Department of Mechanical Engineering and MechanicsDrexel UniversityPhiladelphia
  3. 3.Army Materials Technology LaboratoryWatertown

Personalised recommendations