Oecologia

, Volume 94, Issue 4, pp 457–471

Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P content

  • S. Enríquez
  • C. M. Duarte
  • K. Sand-Jensen
Review Article

Abstract

The strength and generality of the relationship between decomposition rates and detritus carbon, nitrogen, and phosphorus concentrations was assessed by comparing published reports of decomposition rates of detritus of photosynthetic organisms, from unicellular algae to trees. The results obtained demonstrated the existence of a general positive, linear relationship between plant decomposition rates and nitrogen and phosphorus concentrations. Differences in the carbon, nitrogen, and phosphorus concentrations of plant detritus accounted for 89% of the variance in plant decomposition rates of detritus orginating from photosynthetic organisms ranging from unicellular microalgae to trees. The results also demonstrate that moist plant material decomposes substantially faster than dry material with similar nutrient concentrations. Consideration of lignin, instead of carbon, concentrations did not improve the relationships obtained. These results reflect the coupling of phosphorus and nitrogen in the basic biochemical processes of both plants and their microbial decomposers, and stress the importance of this coupling for carbon and nutrient flow in ecosystems.

Key words

Decomposition Plant kingdom Nutrients 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aber JD, Melillo JM, McClaugherty CA (1990) Predicting longterm patterns of mass loss, nitrogen dynamics, and soil organic matter formation from initial fine litter chemistry in temperate forest ecosystems. Can J Bot 68:2201–2208Google Scholar
  2. Aerts R (1989) Aboveground biomass and nutrient dynamics ofCalluna vulgaris andMolinia caerulea in a dry heathland. Oikos 56:31–38Google Scholar
  3. Aizaki M, Takamura N (1991) Regeneration of nutrient and detritus formation from aerobic decomposition of natural Phytoplankton. Jpn J Limnol 52:83–94Google Scholar
  4. Albright LJ, Chocair J, Masuda K, Valdés M (1980) In situ degradation of the kelpsMacrocystis integrifolia andNereocystis luetkeana in British Columbia coastal waters. Nat Can 107:3–10Google Scholar
  5. Andersen FØ (1978) Effects of nutrient level on the decomposition ofPhragmites communis. Trin Arch Hydrobiol 84:42–54Google Scholar
  6. Atchley WR, Anderson D (1978) Ratios and the analysis of biological data. Syst Zool 27:71–78Google Scholar
  7. Azam F, Fenchel T, Field JG, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263Google Scholar
  8. Bastardo H (1979) Laboratory studies on decomposition of littoral plants. Polskie. Arch Hydrobiol 26:267–299Google Scholar
  9. Bayley SE, Zoltek J Jr, Hermann AJ, Dolan TJ, Tortora L (1985) Experimental manipulation of nutrients and water in a freshwater marsh: Effects on biomass decomposition, and nutrient accumulation. Limnol Oceanogr 30:500–512Google Scholar
  10. Benner R, Fogel ML, Sprague EK (1991) Diagenesis of belowground biomass ofSpartina alterniflora in salt-marsh sediments. Limnol Oceanogr 36:1358–1374Google Scholar
  11. Berg B, Ekbohm G (1991) Litter mass-loss rates and decomposition patterns in some needle and leaf litter types. Long-term decomposition in a Scots pine forest VII. Can J Bot 69:1449–1456Google Scholar
  12. Berg B, Tamm CO (1991) Decomposition and nutrient dynamics of litter in long-term optimum nutrition experiments. Scand J For Res 6:305–321Google Scholar
  13. Berg B, Wessen B, Ekbohm G (1982) Nitrogen level and decomposition in Scots pine needle litter. Oikos 38:291–296Google Scholar
  14. Best EPH, Dassen JHA, Boon JJ, Wiegers G (1990) Studies on decomposition ofCeratophyllum demersum litter under laboratory and field conditions: losses of dry mass and nutrients, qualitative changes in organic compounds and consequences for ambient water and sediments. Hydrobiologia 194:91–114Google Scholar
  15. Biddanda BA (1988) Microbial aggregation and degradation of phytoplankton-derived detritus in seawater. II. Microbial metabolism. Mar Ecol Prog Ser 42:89–95Google Scholar
  16. Birch PB, Gabrielson JO, Hamel KS (1983) Decomposition of Cladophora. I. Field studies in the Peel-Harvey estuarine system, Western Australia. Bot Mar 26:165–171Google Scholar
  17. Bockheim JG, Jepsen EA, Heisey DM (1991) Nutrient dynamics in decomposing leaf of four tree species on a sandy soil in northwestern Wisconsin. Can J For 21:803–812Google Scholar
  18. Breteler RJ, Teal JM (1981) Trace element enrichments in decomposing litter ofSpartina alterniflora. Aquat Bot 11:111–120CrossRefGoogle Scholar
  19. Briggs SV, Maher MT, Tongway DJ (1985) Dry matter and nutrient loss from decomposingVallisneria spiralis L. Aquat Bot 22:387–392CrossRefGoogle Scholar
  20. Brock TCM (1984) Aspects of the decomposition ofNymphoides peltata (Gmel.) O. Kuntze (Menyantheceae). Aquat Bot 19:131–156CrossRefGoogle Scholar
  21. Brock TCM, De Lyon MJH, Van Laar EMJM, Van Loon EMM (1985) Field studies on the breakdown ofNuphar lutea (L.) SM. (Nymphaeaceae), and a comparison of three mathematical models for organic weight loss. Aquat Bot 21:1–22CrossRefGoogle Scholar
  22. Chapin FS III (1980) The mineral nutrition of wild plants. Annu Rev Ecol Syst 11:233–260CrossRefGoogle Scholar
  23. Chapin FS III, Bloom AJ, Field CB, Waring RH (1987) Plant responses to multiple environmental factors. BioScience 37:49–57Google Scholar
  24. Chayes F (1971) Ratio correlations. University of Chicago Press, ChicagoGoogle Scholar
  25. Coley PD, Bryant JP, Chapin FS III (1985) Resource availability and plant antiherbivore defense. Science 230:895–899Google Scholar
  26. Davis SM (1991) Growth, decomposition, and nutrient retention ofCladium jamaicense Crantz andTypha dominguensis Pers. in the Florida Everglades. Aquat Bot 40:203–224CrossRefGoogle Scholar
  27. De Busk TA, Dierberg FE (1984) The effect of nitrogen and fiber content on the decomposition of the water hyacinth (Eichhornia crassipes (Mart.) Solms.). Hydrobiologia 118:199–204Google Scholar
  28. Draper NR, Smith H (1966) Applied regression analysis. WileyGoogle Scholar
  29. Duarte CM (1990) Seagrass nutrient concentration. Mar Ecol Prog Ser 67:201–207Google Scholar
  30. Duarte CM (1992) Nutrient concentration of aquatic plants: Patterns across species. Limnol Oceanogr 37: 882–889Google Scholar
  31. Escudero A, Sanz SE, Del Arco JM, Garrido MV (1991) Leaf litter decomposition in a mountain stream. Verh Int Ver Limnol 24: 1987–1993Google Scholar
  32. Fahey TJ, Stevens PA, Hornung M, Rowland P (1991) Decomposition and nutrient release from logging residue following conventional harvest of Sitka spruce in North Wales. Forestry 64: 289–301Google Scholar
  33. Findlay WPK (1934) Studies in the physiology of wood-decay fungi. I. The effect of nitrogen content upon the rate of decay. Ann Bot 46: 109–117Google Scholar
  34. Findlay S, Howe K, Austin HK (1990) Comparison of detritus dynamics in two tidal freshwater wetlands. Ecology 71: 288–295Google Scholar
  35. Gabrielson JO, Birch PB, Hamel KS (1983) Decomposition of Cladophora. II. In vitro studies of nitrogen and phosphorus regeneration. Bot Mar 26: 173–179Google Scholar
  36. Garber JH (1984) Laboratory study of nitrogen and phosphorus remineralization during the decomposition of coastal plankton and seston. Estuarine Coastal Shelf Sci 18: 685–702CrossRefGoogle Scholar
  37. Garten CT Jr (1976) Correlation between concentrations of elements in plants. Nature 261: 686–688CrossRefGoogle Scholar
  38. Gessner MO, Meyer E, Schwoerbel J (1991) Rapid processing of fresh leaf litter in an upland stream. Verh Int Verein Limnol 24: 1846–1850Google Scholar
  39. Godshalk GL, Wetzel RG (1978a) Decomposition of aquatic angiosperms. II. Particulate components. Aquat Bot 5: 301–327Google Scholar
  40. Godshalk GL, Wetzel RG (1978b) Decomposition of aquatic angiosperms. III.Zostera marina L. and a conceptual model of decomposition. Aquat Bot 5: 329–354Google Scholar
  41. Goldman JC, Caron DA, Dennett MR (1987) Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C:N ratio. Limnol Oceanogr 32: 1239–1252Google Scholar
  42. Golterman HL (1972) The role of phytoplankton in detritus formation. Mem Ist Ital Idrobiol 29: 89–103Google Scholar
  43. Gosz JR, Likens GE, Bormann FH (1973) Nutrient release from decomposing leaf and branch litter in the Hubbard Brook Forest, New Hampshire. Ecol Monogr 43: 173–191Google Scholar
  44. Haines EB, Hanson RB (1979) Experimental degradation of detritus made from the salt marsh plantsSpartina alterniflora Loisel,Salicornia virginica L., andJuncus roemerianus Scheele. 1979. J Exp Mar Biol Ecol 40: 27–40CrossRefGoogle Scholar
  45. Harrison PG (1982) Control of microbial growth and of amphipod grazing by water soluble compounds from leaves ofZostera marina. Mar Biol 67: 225–230CrossRefGoogle Scholar
  46. Harrison PG (1989) Detrital processing in seagrass systems: a review of factors affecting decay rates, remineralization and detritivory. Aquat Bot 23: 263–288Google Scholar
  47. Hemminga MA, Buth GJC (1991) Decomposition in salt marsh ecosystems of the S.W. Netherlands: the effects of biotic and abiotic factors. Vegetatio 92: 73–83Google Scholar
  48. Hemminga MA, Nieuwenhuize J (1991) Transport, deposition and “in situ” decay of seagrasses in a tropical mudflat area (Banc D'Arguin, Mauritania). Neth J Sea Res 27: 183–190Google Scholar
  49. Hill BH (1979) Uptake and release of nutrients by aquatic macrophytes. Aquat Bot 7: 87–93CrossRefGoogle Scholar
  50. Iversen TM (1973) Decomposition of autumn-shed beech leaves in a springbrook and its significance for the fauna. Arch Hydrobiol 72: 305–312Google Scholar
  51. Joergensen RG (1991) Organic matter and nutrient dynamics of the litter layer on a forest rendzina under beech. Biol Fertil Soils 11: 163–169CrossRefGoogle Scholar
  52. Joergensen RG, Meyer B (1990) Nutrient changes in decomposing beech leaf litter assessed using a solution flux approach. J Soil Sci 41: 279–293Google Scholar
  53. Kenworthy WJ, Thayer GW (1984) Production and decomposition of the roots and rhizomes of seagrasses,Zostera marina andThalassia testudinum, in temperate and subtropical marine ecosystems. Bull Mar Sci 35: 364–379Google Scholar
  54. Lee SY (1989) The importance of sesarminae crabsChiromanthes spp. and inundation frecuency on mangrove (Kandelia candel (L.) Druce) leaf litter turnover in a Hong Kong tidal shrimp pond. J Exp Mar Biol Ecol 131: 23–43CrossRefGoogle Scholar
  55. Mattson WJ Jr (1980) Herbivory in relation to plant nitrogen content. Annu Rev Ecol Syst 11: 119–161CrossRefGoogle Scholar
  56. McClaugherty CA, Pastor J, Aber JD (1985) Forest litter decomposition in relation to soil nitrogen dynamics and litter quality. Ecology 66: 266–275Google Scholar
  57. Melillo JM, Aber JD, Muratore JM (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63: 621–626Google Scholar
  58. Mitchell DT, Coley PGF, Webb S, Allsopp N (1986) Litterfall and decomposition processes in the coastal fynbos vegetation, South-Western Cape, South Africa. J Ecol 74: 977–993Google Scholar
  59. Neely RK, Davis CB (1985) Nitrogen and phosphorus fertilization ofSparganium eurycarpum Engelm. andTypha glauca Godr. Stands. II. Emergent plant decomposition. Aquat Bot 22: 363–375Google Scholar
  60. Nelson WJ, Kadlec JA, Murkin HR (1990) Seasonal comparison of weight for two types ofTypha glauca Godr. leaf litter. Aquat Bot 37: 299–314CrossRefGoogle Scholar
  61. Newell RC, Lucas MI, Linley EAS (1981) Rate of degradation and efficiency of conversion of phytoplankton debris by marine micro-organisms. Mar Ecol Prog Ser 6: 123–136Google Scholar
  62. Newell SY, Fell JW, Statzell-Tallman A, Miller C, Cefalu R (1984) Carbon and nitrogen dynamics in decomposing leaves of three coastal marine vascular plants of the subtropics. Aquat Bot 19: 183–192CrossRefGoogle Scholar
  63. Newell SY, Fell JW, Miller C (1986) Deposition and decomposition of Turtlegrass leaves. Int Rev Ges Hydrobiol 71: 363–369Google Scholar
  64. O'Connell AM (1987) Litter dynamics in Karri (Eucalyptus diversicolor) forest of South-Western Australia. J Ecol 75: 781–796Google Scholar
  65. O'Connell AM (1988) Nutrient dynamics in decomposing litter in karri (Eucalyptus diversicolor F. Muèll.) forests of South-Western Australia. Journal of Ecology 76: 1186–1203Google Scholar
  66. Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44: 327–332Google Scholar
  67. Otsuki A, Hanya T (1972) Production of dissolved organic matter from dead green algal cells. I. Aerobic microbial decomposition. Limnol Oceanogr 17: 248–257Google Scholar
  68. Palm CA, Sanchez PA (1990) Decomposition and nutrient release patterns of the leaves of three tropical legumes. Biotropica 22: 330–338Google Scholar
  69. Peduzzi P, Herndl GJ (1991) Decomposition and significance of seagrass leaf litter (Cymodocea nodosa) for the microbial food web in coastal waters (Gulf of Trieste, Northern Adriatic Sea). Mar Ecol Prog Ser 71: 163–174Google Scholar
  70. Pellikaan GC (1982) Decomposition processes of eelgrass,Zostera marina L. Hydrobiol Bull 16: 83–92CrossRefGoogle Scholar
  71. Pellikaan GC (1984) Laboratory experiments on eelgrass (Zostera marina) decomposition. Neth J Sea Res 18: 360–383Google Scholar
  72. Persson T, Bååth E, Clarholm M, Lundkvist H, Söderström B, Sohlenius B (1980) Trophic structure, biomass dynamics and carbon metabolism of soil organisms in a Scots pine forest. Ecol Bull 32: 419–462Google Scholar
  73. Reddy KR, DeBusk WF (1991) Decomposition of water hyacinth detritus in eutrophic lake water. Hydrobiologia 211: 101–109CrossRefGoogle Scholar
  74. Robertson AI, Daniel PA (1989) Decomposition and the annual flux of detritus from fallen timber in tropical mangrove forest. Limnol Oceanogr 34: 640–646Google Scholar
  75. Rogers KH, Breen CM (1982) Decomposition ofPotamogeton crispus L.: The effects of drying on the pattern of mass and nutrient loss. Aquat Bot 12: 1–12CrossRefGoogle Scholar
  76. Romero J, Pergent G, Pergent-Martini C, Mateo MA, Regnier C (1992) The detritic compartment in aPosidonia oceanica meadow: litter features, decomposition rates and mineral stocks. Mar Ecol PSZNI 13: 69–83Google Scholar
  77. Rublee PA, Roman MR (1982) Decomposition of turtlegrass (Thalassia testudinum Koning) in flowing sea-water tanks and litterbags: compositional changes and comparisons with natural particulate matter. J Exp Mar Biol Ecol 58: 47–58CrossRefGoogle Scholar
  78. Schlesinger WH (1985) Decomposition of chaparral shrub foliage. Ecology 66: 1353–1359Google Scholar
  79. Seastedt TR (1988) Mass, nitrogen and phosphorus dynamics in foliage and root detritus of tallgrass prairie. Ecology 69: 59–65Google Scholar
  80. Sharma E, Ambasht RS (1987) Litterfall, decomposition and nutrient release in an age sequence ofAlnus nepalensis plantation stands in the eastern Himalaya. J Ecol 75: 997–1010Google Scholar
  81. Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems (Studies in Ecology Vol. 5) Blackwell, OxfordGoogle Scholar
  82. Tanaka Y (1991) Microbial decomposition of reed (Phragmites communis) leaves in a saline lake. Hydrobiologia 220: 119–129CrossRefGoogle Scholar
  83. Taylor BR, Parkinson D, Parsons WFJ (1989) Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology 70: 97–104Google Scholar
  84. Tenny FG, Waksman SA (1929) Composition of natural organic materials and their decomposition in the soil. IV. The nature and rapidity of decomposition of the various organic complexes in the different plant materials, under aerobic conditions. Soil Sci 28: 55–84Google Scholar
  85. Tezuka Y (1990) Bacterial regeneration of ammonium and phosphate as affected by the carbon: nitrogen: phosphorus ratio of organic substrates. Microb Ecol 19: 228–238CrossRefGoogle Scholar
  86. Thayer GW (1974) Identity and regulation of nutrients limiting phytoplankton production in the shallow estuaries near Beaufort, N. C. Oecologia 14: 75–92CrossRefGoogle Scholar
  87. Twilley RR, Blanton LR, Brinson MM, Davis GJ (1985) Biomass production and nutrient cycling in aquatic macrophyte communities of the Chowan River, North Carolina. Aquat Bot 22: 231–252CrossRefGoogle Scholar
  88. Twilley RR, Ejdung G, Romare P, Kemp M (1986) A comparative study of decomposition, oxygen consumption and nutrient release for selected aquatic plants occurring in an estuarine environment. Oikos 47: 190–198Google Scholar
  89. Upadhyay VP, Singh JS, Meentemeyer V (1989) Dynamics and weight loss of leaf litter in Central Himalayan forests: abiotic versus litter quality influences. J Ecol 77: 147–161Google Scholar
  90. Valiela I, Wilson J, Buchsbaum R, Rietsma C, Bryant D, Foreman K, Teal J (1984) Importance of chemical composition of salt marsh litter on decay rates and feeding by detritivores. Bull Mar Sci 35: 261–269Google Scholar
  91. Vadstern O, Olsen Y (1989) Chemical composition and phosphate uptake kinetics of limnetic bacterial communities cultures in chemostats under phosphorus limitation. Limnol Oceanogr 34: 939–946Google Scholar
  92. Van der Valk AG, Attiwill PM (1984) Decomposition of leaf and root litter ofAvicennia marina at Westernport bay, Victoria, Australia. Aquat Bot 18: 205–221Google Scholar
  93. Van der Valk AG, Rhymer JM, Murkin HR (1991) Flooding and the decomposition of litter of four emergent plant species in a prairie wetland. Wetlands 11: 1–16Google Scholar
  94. Wahbeh MI, Mahasneh AM (1985) Some aspects of decomposition of leaf litter of the seagrass Halophila stipulacea from the Gulf of Aqaba (Jordan). Aquat Bot 21: 237–244CrossRefGoogle Scholar
  95. Walsh I, Dymond J, Collier R (1988) Rates of recycling of biogenic components of settling particles in the ocean derived from sediment trap experiments. Deep-Sea Res 35: 43–58Google Scholar
  96. Williams WA, Jones MB, Demment MW (1990) A concise table for path analysis statistics. Agron J 82: 1022–1024Google Scholar
  97. Yavitt JB, Fahey TJ (1986) Litter decay and leaching from the forest floor inPinus contorta (Lodgepole pine) ecosystems. J Ecol 74: 525–545Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • S. Enríquez
    • 1
  • C. M. Duarte
    • 1
  • K. Sand-Jensen
    • 2
  1. 1.Centro de Estudios Avanzados de BlanesCSICBlanes, GironaSpain
  2. 2.Freshwater Biological LaboratoryUniversity of CopenhagenHillerødDenmark

Personalised recommendations