Plasma Chemistry and Plasma Processing

, Volume 4, Issue 3, pp 163–178 | Cite as

Optical emission spectroscopy and actinometry in CCl4-Cl2 radiofrequency discharges

  • Riccardo d'Agostino
  • Francesco Cramarossa
  • Santolo De Benedictis
  • Francesco Fracassi


Radiofrequency discharges fed with CCl4-Cl2 mixtures have been studied in the pressure range 0.3 to 0.6 torr by means of emission spectroscopic actinometry with Ar, He, and N2 as actinometers. Two different reactors, a parallel plate and a capacitively coupled tubular one, have been utilized for this study to obtain information for a large range of electron energy distributions. Analysis of the experimental results demonstrates the following: the utilization of actinometry and its range of validity, the importance of electron attachment to CClx species during the plasma decomposition process, and the effects of the presence of chlorine and “glowpolymer” in the discharge medium.

Key words

Low pressure rf discharges optical emission spectroscopy actinometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. A. Gottscho, G. P. Davis, and R. H. Burton,Plasma Chem. Plasma Process. 3, 193 (1983).CrossRefGoogle Scholar
  2. 2.
    R. A. Gottscho, G. Smolinsky, and R. H. Burton,J. Appl. Phys. 53, 5908 (1982).CrossRefADSGoogle Scholar
  3. 3.
    H. J. Tiller, D. Berg, and R. Mohr,Plasma Chem. Plasma Process. 1, 233 (1981).CrossRefGoogle Scholar
  4. 4.
    V. V. Gusev, V. M. Dolgopov, D. I. Slovetskii, and E. F. Shelykhmanov,High Temp. 21, 15 (1983).Google Scholar
  5. 5.
    D. L. Flamm and V. M. Donnelly,Plasma Chem. Plasma Process. 1, (1981), and references therein.Google Scholar
  6. 6.
    J. W. Coburn,Plasma Chem. Plasma Process. 2, 1 (1982), and references therein.CrossRefGoogle Scholar
  7. 7.
    H. J. Tiller, R. Göbel, F. W. Breitbarth, and D. Sameith,Proceedings of the 6th International IUPAC Symposium on Plasma Chemistry, M. J. Boulos and R. J. Munz, eds., Vol. 3, p. 577, Montreal, 1983.Google Scholar
  8. 8.
    G. Smolinsky, R. P. Chang, and T. M. Mayer,J. Vac. Sci. Technol. 18, (1981); Y. Horiike, T. Yamazaki, M. Shibagaki, and T. Kurisaki,Jpn. J. Appl. Phys. 21, 1412 (1982); R. H. Bruce inPlasma Processing, R. G. Frieser and C. J. Mogab, eds., The Electrochemical Soc., Pennington (1981), p. 243; P. M. Schaible, W. C. Metzger, and J. P. Anderson,J. Vac. Sci. Technol. 15, 334 (1978); B. J. Curtis and H. J. Brunner,J. Electrochem. Soc. 125, 829 (1978); B. J. Curtis,Solid State Technol. 24, 129 (1980); G. C. Schwartz and P. M. Schaible,Solid State Technol. 23, 85 (1980).Google Scholar
  9. 9.
    J. W. Coburn and M. Chen,J. Appl. Phys. 51, 3134 (1980); J. W. Coburn and M. Chen,J. Vac. Sci. Technol. 18, 353 (1981).CrossRefADSGoogle Scholar
  10. 10.
    R. d'Agostino, F. Cramarossa, S. De Benedicits, and G. Ferraro,J. Appl. Phys. 52, 1259 (1981); R. d'Agostino, V. Colaprico, and F. Cramarossa,Plasma Chem. Plasma Process.1, 365 (1981).CrossRefADSGoogle Scholar
  11. 11.
    R. d'Agostino, F. Cramarossa, and S. De Benedictis,Plasma Chem. Plasma Process. 2, 213 (1982); R. d'Agostino, F. Cramarossa, V. Colaprico, and R. d'Ettole,J. Appl. Phys. 54, 1284 (1983).CrossRefGoogle Scholar
  12. 12.
    D. L. Flamm, P. L. Cowan, and G. A. Golovchenko,J. Vac. Sci. Technol. 17, 1341 (1980).CrossRefGoogle Scholar
  13. 13.
    H. U. Scheunemann, E. Illenberger, and H. Baumgärtel,Ber. Bunsenges. Phys. Chem. 84, 580 (1980); J. P. Johnson, L. G. Christophorou, and J. G. Carter,J. Chem. Phys. 67, 2196 (1977); H. S. W. Massey, E. H. S. Burhop, and H. B. Gilbody,Electronic and Ionic Impact Phenomena, Vol. 2, Oxford University Press (1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • Riccardo d'Agostino
    • 1
  • Francesco Cramarossa
    • 1
  • Santolo De Benedictis
    • 1
  • Francesco Fracassi
    • 1
  1. 1.Centro di Studio per la Chimica dei Plasmi, C.N.R., Dipartimento di ChimicaUniversità di BariBariItaly

Personalised recommendations