Plasma Chemistry and Plasma Processing

, Volume 5, Issue 4, pp 391–414 | Cite as

Particle dynamics and particle heat and mass transfer in thermal plasmas. Part II. Particle heat and mass transfer in thermal plasmas

  • Y. C. Lee
  • Y. P. Chyou
  • E. Pfender


This paper is concerned with a review of heat and mass transfer between thermal plasmas and particulate matter. In this situation various effects which are not present in ordinary heat and mass transfer have to be considered, including unsteady conditions, modified convective heat transfer due to strongly varying plasma properties, radiation, internal conduction, particle shape, vaporization and evaporation, noncontinuum conditions, and particle charging. The results indicate that (i) convective heat transfer coefficients have to be modified due to strongly varying plasma properties; (ii) vaporization, defined as a mass transfer process corresponding to particle surface temperatures below the boiling point, describes a different particle heating history than that of the evaporation process which, however, is not a critical control mechanism for interphase mass transfer of particles injected into thermal plasmas; (iii) particle heat transfer under noncontinuum conditions is governed by individual contributions from the species in the plasma (electrons, ions, neutral species) and by particle charging effects.

Key words

Thermal plasmas heat and mass transfer review 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Pfender and Y. C. Lee, “Particle Dynamics and Particle Heat and Mass Transfer in Thermal Plasmas. Part I: The Motion of a Single Particle without Thermal Effects,”Plasma Chem. Plasma Process. 5, 211 (1985).Google Scholar
  2. 2.
    B. Waldie, “Review of Recent Work on the Processing of Powders in High-Temperature Plasmas. Part II: Particle Dynamics, Heat Transfer and Mass Transfer,”Chem. Eng. (London), May, 188 (1972).Google Scholar
  3. 3.
    J. A. Lewis and W. H. Gauvin, “Motion of Particles Entrained in a Plasma Jet,”AIChE J. 19, 982 (1973).Google Scholar
  4. 4.
    C. Bonet, M. Daguenet, and M. Dumargue, “Etude theorique de l'evaporation d'une particule spherique d'un materiau refractaire dans un plasma thermique,”Int. J. Heat Mass Transfer 17, 643, 1559 (1974).Google Scholar
  5. 5.
    P. D. Johnston, “The Rate of Decomposition of Silica Particles in an Augmented Flame,”Combust. Flame 18, 373 (1972).Google Scholar
  6. 6.
    F. J. Harvey and T. N. Meyer, “A Model of Liquid Metal Droplet Vaporization in Arc-Heated Gas Streams,”Metall. Trans. B 9, 615 (1978).Google Scholar
  7. 7.
    M. I. Boulos, “Heating of Powders in the Fire Ball of an Induction Plasma,”IEEE Tran. Plasma Sci. PS-6, 93 (1978).Google Scholar
  8. 8.
    T. Yoshida and K. Akashi, “Particle Heating in a Radio-Frequency Plasma Torch,”J. Appl. Phys. 48, 2252 (1977).Google Scholar
  9. 9.
    J. K. Fiszdon, “Melting of Powder Grains in a Plasma Flame,”Int. J. Heat Mass Transfer 22, 749 (1979).Google Scholar
  10. 10.
    N. N. Sayegh and W. H. Gauvin, “Numerical Analysis of Variable-Property Heat Transfer to a Single Sphere in High Temperature Surroundings,”AIChE J. 25, 522 (1979).Google Scholar
  11. 11.
    N. N. Rykalin, A. A. Uglov, Yu. N. Lokhov, and A. G. Gnedovets, “Properties of Heating of Submicron Metal Particles in a Hot Gas,”High Temp. 19, 404 (1981).Google Scholar
  12. 12.
    Y. C. Lee, K. C. Hsu, and E. Pfender, “Modeling of Particles Injected into a D.C. Plasma Jet,” Fifth International Symposium on Plasma Chemistry, Vol. 2, Heriot-Watt University, Edinburgh, Scotland (1981), p. 795.Google Scholar
  13. 13.
    Y.C. Lee, “Trajectories and Heating of Particles Injected into a Thermal Plasma,” Master Thesis, Department of Mechanical Engineering, University of Minnesota (1982).Google Scholar
  14. 14.
    E. H. Randhawa and W. H. Gauvin, “Effect of Mass Transfer on the Rate of Heat Transfer to Stationary Spheres in High-Temperature Surroundings,” 7th Int. Heat Transfer Conference, Munich, Germany (1982).Google Scholar
  15. 15.
    E. Bourdin, P. Fauchais, and M. I. Boulos, “Transient Heat Conduction under Plasma Conditions,”Int. J. Heat Mass Transfer 26, 567 (1983).Google Scholar
  16. 16.
    X. Chen and E. Pfender, “Heat Transfer to a Single Particle Exposed to a Thermal Plasma,”Plasma Chem. Plasma Process. 2, 185 (1982).Google Scholar
  17. 17.
    X. Chen and E. Pfender, “Unsteady Heating and Radiation Effects of Small Particles in a Thermal Plasma,”Plasma Chem. Plasma Process. 2, 293 (1982).Google Scholar
  18. 18.
    X. Chen and E. Pfender, “Effect of the Knudsen Number on Heat Transfer to a Particle Immersed into a Thermal Plasma,”Plasma Chem. Plasma Process. 3, 97 (1983).Google Scholar
  19. 19.
    X. Chen and E. Pfender, “Behavior of Small Particles in a Thermal Plasma Flow,”Plasma Chem. Plasma Process. 3, 351 (1983).Google Scholar
  20. 20.
    M. Vardelle, A. Vardelle, P. Fauchais, and M. I. Boulos, “Plasma-Particle Momentum and Heat Transfer: Modeling and Measurement,”AIChE J. 29, 236 (1983).Google Scholar
  21. 21.
    N. Konopliv and E. M. Sparrow, “Unsteady Heat Transfer and Temperature for Stokesian Flow about a Sphere,”J. Heat Transfer, 266 (1972).Google Scholar
  22. 22.
    P. K. Chang,Separation of Flow, Pergamon Press, New York (1970), p. 199.Google Scholar
  23. 23.
    I. S. Pasternak and W. H. Gauvin, “Turbulent Heat and Mass Transfer for Stationary Particle,”Can. J. Chem. Eng. 38, 35 (1960).Google Scholar
  24. 24.
    R. B. Bird, W. E. Stewart, and E. N. Lightfoot,Transport Phenomena, Wiley, New York (1960).Google Scholar
  25. 25.
    W. M. Kays and M. E. Crawford,Convective Heat and Mass Transfer, 2nd edn., McGraw-Hill, New York (1980).Google Scholar
  26. 26.
    D. B. Spalding, “The Combustion of Liquid Fuels,”4th Symposium (International) on Combustion, Williams and Wilkins, Baltimore, Maryland (1953), pp. 847–864.Google Scholar
  27. 27.
    X. Chen, Y. C. Lee, and E. Pfender, “The Importance of Knudsen and Evaporation Effect,” 6th International Symposium on Plasma Chemistry, Montreal, Canada (1983).Google Scholar
  28. 28.
    R. Godard and J. S. Chang, “Local and Total Heat Transfer on a Sphere in a Free Molecular Ionized Gas Flow,”J. Phys. D.: Appl. Phys. 13, 2005 (1980).Google Scholar
  29. 29.
    B. Y. H. Liu, K. T. Whitby, and H. H. S. Yu, “On the Theory of Charging of Aerosol Particles by Unipolar Ions in the Absence of an Applied Electric Field,”J. Colloid Interface Sci. 23, 367 (1967).Google Scholar
  30. 30.
    J. S. Chang, “Theory of Diffusion Charging of Arbitrarily Shaped Conductive Aerosol Particles by Unipolar Ions,”J. Aerosol Sci. 12, 19 (1981).Google Scholar
  31. 31.
    N. A. Fuchs, “On the Stationary Charge Distribution on Aerosol Particles in a Bipolar Ionic Atmosphere,”Pure Appl. Geophys. 186 (1963).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • Y. C. Lee
    • 1
  • Y. P. Chyou
    • 1
  • E. Pfender
    • 1
  1. 1.Heat Transfer Division, Department of Mechanical EngineeringUniversity of MinnesotaMinneapolis

Personalised recommendations