Advertisement

Plasma Chemistry and Plasma Processing

, Volume 1, Issue 4, pp 365–375 | Cite as

The use of “actinometer” gases in optical diagnostics of plasma etching mixtures: SF6-O2

  • Riccardo d'Agostino
  • Vincenzo Colaprico
  • Francesco Cramarossa
Article

Abstract

The spectroscopic emission intensities from excited F atoms in SF6-O2 discharges at 1 torr have been correlated to the densities of atoms in their ground electronic state by measuring the excitation efficiencies of the electrons in the energy range 11 to 17 eV with a method which essentially consists in the analysis of the emission of Ar or N2, added as “actinometer” gases to the discharge mixtures. The general applicability of the method has been tested by a direct titration of F atoms with chlorine. The spectroscopic analysis has allowed the determination of useful information on the trends of both the electron densities and their energies as a function of the oxygen percent in the feed.

Key words

Plasma etching (SF6-O2spectroscopic analysis actinometer gases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. J. Mogab, A. C. Adams, and D. L. Flamm,J. Appl. Phys. 49, 3796 (1978).Google Scholar
  2. 2.
    H. F. Winters, J. W. Coburn, and E. Kay,J. Appl. Phys. 48, 4973 (1977).Google Scholar
  3. 3.
    J. W. Coburn and E. Kay,Solid State Technol. 22, 117 (1980).Google Scholar
  4. 4.
    G. Smolinsky and D. L. Flamm,J. Appl. Phys. 50, 4982 (1979).Google Scholar
  5. 5.
    D. L. Flamm,Solid State Technol. 22, 109 (1980).Google Scholar
  6. 6.
    D. L. Flamm, Extended Abstracts of the 157th Meeting of the Electrochemical Society, Vol. 80-1 (St. Louis, Missouri, 1980), p. 256.Google Scholar
  7. 7.
    H. Boyd and M. S. Tang,Solid State Technol. 22, 133 (1980).Google Scholar
  8. 8.
    R. d'Agostino and D. L. Flamm,J. Appl. Phys. 52, 162 (1981).Google Scholar
  9. 9.
    E. P. G. T. van de Ven and P. A. Zijlstra, Extended Abstracts of the 157th Meeting of the Electrochemical Society, Vol. 80-1 (St. Louis, Missouri, 1980), p. 253.Google Scholar
  10. 10.
    J. J. Wagner and W. W. Brandt,Proc. of the 4th Int. Symp. of Plasma Chemistry, Zurich, Switzerland, August, 1979, p. 120.Google Scholar
  11. 11.
    G. Bruno, P. Capezzuto, F. Cramarossa, R. d'Agostino, and E. Molinari,J. Fluorine Chem. 16, 209 (1980).Google Scholar
  12. 12.
    G. Bruno, P. Capezzuto, F. Cramarossa, and R. d'Agostino, Extended Abstracts of the 157th Meeting of the Electrochemical Society, Vol. 80-1 (St. Louis, Missouri, 1980), p. 315.Google Scholar
  13. 13.
    E. Kay, A. Dilks, and U. Hetzler,Macromol. Sci. Chem. A 12, 1393 (1978).Google Scholar
  14. 14.
    E. Kay and A. Dilks,ACS Symp. Ser.: Plasma Polymerization, M. Shen and A. T. Bell, eds. (American Chemical Society, 1979).Google Scholar
  15. 15.
    E. A. Truesdale and G. Smolinsky,J. Appl. Phys. 50, 6594 (1979).Google Scholar
  16. 16.
    E. Kay, J. Coburn, and A. Dilks, inTopics in Current Chemistry: Plasma Chemistry III, S. Veprek and M. Venugopalan, eds. (Springer-Verlag, 1980), and references therein.Google Scholar
  17. 17.
    A. Madan and S. R. Ovshinsky,J. Non-Cryst. Solids 35–36, 171 (1980), and references therein.Google Scholar
  18. 18.
    W. R. Harshbarger, T. A. Miller, P. Norton, and R. A. Porter,Appl. Spectrosc. 31, 201 (1977).Google Scholar
  19. 19.
    W. R. Harshbarger, R. A. Porter, and P. Norton,J. Electron. Mater. 7, 429 (1978).Google Scholar
  20. 20.
    B. J. Curtis and H. J. Brunner,J. Electrochem. Soc. 125, 829 (1978).Google Scholar
  21. 21.
    V. M. Donnelly and D. L. Flamm,J. Appl. Phys. 51, 5273 (1980).Google Scholar
  22. 22.
    D. L. Flamm,J. Appl. Phys. 51, 5688 (1980).Google Scholar
  23. 23.
    D. L. Flamm, V. M. Donnelly, and J. A. Mucha,J. Appl. Phys. 52, 3833 (1981).Google Scholar
  24. 24.
    R. Gilbert, J. Castonguay, and A. Théorêt,J. Appl. Polym. Sci. 24, 125 (1979).Google Scholar
  25. 25.
    R. Gilbert, J. Castonguay, and A. Théorêt,Can. J. Spectrosc. 25, 15 (1980).Google Scholar
  26. 26.
    J. W. Coburn and M. Chen,J. Appl. Phys. 51, 3134 (1980).Google Scholar
  27. 27.
    R. d'Agostino, F. Cramarossa, S. de Benedictis, and G. Ferraro,J. Appl. Phys. 52, 1259 (1981).Google Scholar
  28. 28.
    P. C. Nordine and D. E. Rosner,J. Chem. Soc., Faraday Trans. 72, 1526 (1976); P. C. Nordine and J. D. Le Grange,AIAA J. 14, 644 (1976).Google Scholar
  29. 29.
    A. C. Lloyd,Int. J. Chem. Kinet. 3, 39 (1971).Google Scholar
  30. 30.
    G. Schatz and M. Kaufman,J. Phys. Chem. 76, 3586 (1972).Google Scholar
  31. 31.
    P. C. Nordine,J. Chem. Phys. 61, 224 (1974).Google Scholar
  32. 32.
    M. A. A. Clyne and W. S. Nip, inReactive Intermediates in the Gas Phase, Generation and Monitoring, D. W. Setzer, ed. (Academic Press, 1979), and references therein.Google Scholar
  33. 33.
    F. Cramarossa, G. Ferraro, and E. Molinari,J. Quant. Spectrosc. Radiat. Transfer 14, 419 (1974).Google Scholar
  34. 34.
    T. Yoshizawa, Y. Sakai, H. Tageshira, and S. Sakamoto,J. Phys. D:Appl Phys. 12, 1839 (1979); H. Itoh, M. Shimozuma, and H. Tagashira,J. Phys. D:Appl. Phys. 13, 1201 (1980).Google Scholar
  35. 35.
    M. Capitelli, M. Dilonardo, and C. Gorse,Beitr. Plasmaphys. 20, 83 (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • Riccardo d'Agostino
    • 1
  • Vincenzo Colaprico
    • 1
  • Francesco Cramarossa
    • 1
  1. 1.Centro di Studio per la Chimica dei Plasmi, C.N.R. Istituto di Chimica Generale ed InorganicaUniversita di BariBariItaly

Personalised recommendations