Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Electrical conductivity, internal temperatures and thermal evolution of the moon


The electrical conductivity of olivine and pyroxene is a strong function of the fugacity of oxygen in the atmosphere with which the mineral is in equilibrium. Lunar temperature profiles calculated from data on the electrical conductivity of these two minerals at oxygen fugacities similar to those which exist in the Moon indicate considerably higher temperatures for the lunar interior than obtained from conductivity data collected under normal atmospheric conditions. These high interior temperatures, the extensive differentiation associated with the formation of the lunar maria, and the radioactive element content of the Moon indicate that the Moon accreted at temperatures between 600 and 1000°C. Gravitational heating during accretion would lead to melting of at least the outer 200 km of the Moon and would produce conditions favourable to separation of a metal-sulfide melt sufficient to form a core of 200–300 km radius. Such a core would reach the center of the Moon within a few million years after accretion. This core could produce the remanent magnetization observed in the surface rocks. Dynamo action would cease with the cessation of convective motion within the core as the temperature of the surrounding mantle increased due to radioactive heating. With the radioactivity assumed in the present model and the high accretion temperature, this event would require less than 2 b.y., but more than 1.6 b.y.

This is a preview of subscription content, log in to check access.


  1. Arnold, J. R., Peterson, L. E., Metzger, A. E., and Trombka, J. I.: 1972,Apollo 15 Preliminary Science Report, NASA, Washington, D. C., 16–1.

  2. Baldwin, R. B.: 1971,Phys. Earth Planetary Interiors 4, 167–179.

  3. Boland, J. N. and Duba, A.: 1973, ‘Microstructural Studies of Mg-Rich Orthopyroxenes’, m.s. in prep.

  4. Bradley, R. S., Jamil, A. K., and Munro, D. C.: 1964,Geochim. Cosmochim. Acta 28, 1669–1678.

  5. Brett, R.: 1972,Trans. Amer. Geophys. Union 53, 723.

  6. Carslaw, H. S. and Jaeger, J. C.: 1959,Conduction of Heat in Solids, Clarendon Press, Oxford.

  7. Clark, S. P.: 1966,Handbook of Physical Constants, G. S. A. Memoir 97, pp. 459–482.

  8. Compston, W., Vernon, M. J., Berry, H., and Rudowski, R.: 1971,Earth Planetary Sci. Letters 12, 55–58.

  9. Coughlin, J. P.: 1954,Bull. 542, U.S. Bureau of Mines.

  10. Duba, A.: 1971, ‘The Electrical Conductivity of Olivine as a Function of Temperature, Pressure, Composition, and Crystallographic Orientation, Ph.D. Thesis, University of Chicago, Chicago, Ill.

  11. Duba, A.: 1972,J. Geophys. Res. 77, 2483–2495.

  12. Duba, A. and Lilley, F. E. M.: 1972,J. Geophys. Res., in press.

  13. Duba, A. and Nicholls, I. A.: 1972, ‘The Influence of Oxidation State on the Electrical Conductivity of Olivine’, in press.

  14. Duba, A., Boland, J. N., and Ringwood, A. E.: 1973, ‘The Electrical Conductivity of Pyroxene’, in preparation.

  15. Duba, A., Heard, H. C., and Schock, R. N.: 1972a,Earth Planetary Sci. Letters 15, 301–304.

  16. Duba, A., Ito, J., and Jamieson, J. C.: 1972b, ‘The Effect of Ferric Iron on the Electrical Conductivity of Olivine’, in press.

  17. Dyal, P. and Parkin, C. W.: 1972,The Moon 4, 63–87.

  18. Elsasser, W. M.: 1963, in J. Geiss and E. D. Goldberg (eds.),Earth Science and Meteoritics, dedicated to F. G. Houtermans, North Holland Pub. Co., Amsterdam, pp 1–30.

  19. Eugster, H. P. and Wones, D. R.: 1962,J. Petrology 3, 82–125.

  20. Fricker, P. E., Reynolds, R. T., and Summers, A. L.: 1972, ‘Possible Thermal History of the Moon’, preprint.

  21. Gast, P. W. and Hubbard, N. J.: 1970,Science 167, 484–487.

  22. Gast, P. W. and McConnell, R. K., Jr.: 1972,1972 Lunar Science Conference Abstracts, Houston, Texas, 257–258.

  23. Green, T. H.: 1968, in Y. W. Isackson (ed.),Origin of Anorthosite and Related Rocks, Memoir 18 University of the State of New York, pp. 23–29.

  24. Green, D. H. and Ringwood, A. E.: 1972a in J. W. Chamberlain and C. Watkins (eds),The Apollo 15Lunar Samples, Lunar Science Institute, Houston, Texas.

  25. Green, D. H. and Ringwood, A. E.: 1972b, Significance of a Primitive Lunar Basaltic Composition Present in Apollo 15 Breccias', in press.

  26. Green, D. H., Ringwood, A. E., Ware, N. G., Hibberson, W. O., Major, A., and Kiss, E.: 1971,Proc. Second Lunar Conf. 1, 601–615, MIT Press.

  27. Green, D. H., Ringwood, A. E., Ware, N. G., and Hibberson, W. O.: 1972, ‘Experimental Petrology and Petrogenesis of Apollo 14 Basalts’, in press.

  28. Hays, J. F.: 1972,Phys. Earth Planetary Interiors 5, 77–84.

  29. Housley, R. M. and Morin, F. J.: 1972,The Moon 4, 35–38.

  30. Kaula, W. M.: 1970,Science 166, 1581–1588.

  31. Kaula, W. M.: 1971,Trans. Amer. Geophys. Union 52, I.U.G.G. 1–4.

  32. Langseth, M. G., Jr., Clark, S. P., Jr., Chute, J. L., Jr., Keihm, S. J., and Wechsler, A. E.: 1972,The Moon 4, 390–410.

  33. Larimer, J. W.: 1968,Geochim. Cosmochim. Acta 32, 1187–1207.

  34. Larimer, J. W.: 1971,Geochim. Cosmochim. Acta 35, 769–786.

  35. Larimer, J. W. and Anders, E.: 1967,Geochim. Cosmochim. Acta 31, 1239–1270.

  36. Larimer, J. W. and Anders, E.: 1970,Geochim. Cosmochim. Acta 34, 367–387.

  37. Liebermann, R. C.: 1972,Earth Planetary Sci. Letters, in press.

  38. Mizutani, H., Matsui, T., and Takeuchi, H.: 1972,The Moon 4, 476–489.

  39. Morgan, J. W.: 1971, in Brian Mason (ed.),Handbook of Elemental Abundances in Meteorites, Gordon and Breach, New York, pp. 529–548.

  40. Nance, R. L.: 1971,Phys. Earth Planetary Interiors 4, 193–196.

  41. Naughton, J. J. and Fujikawa, Y.: 1959,Nature 184, 54–56.

  42. Osburn, C. M. and Vest, R. W.: 1971,J. Am. Ceram. Soc. 54, 428–435.

  43. Papanastassiou, D. A. and Wasserburg, G. J.: 1971,Earth Planetary Sci. Letters 12, 36–48.

  44. Ringwood, A. E.: 1966,Geochim. Cosmochim. Acta 30, 41–104.

  45. Ringwood, A. E.: 1970a,J. Geophys. Res. 75, 6453–6479.

  46. Ringwood, A. E.: 1970b,Earth Planetary Sci. Letters 8, 131–140.

  47. Ringwood, A. E.: 1973,Composition Petrology and Origin of the Earth, McGraw Hill, in press.

  48. Ringwood, A. E. and Essene, E.: 1970,Geochim. Cosmochim. Acta, Suppl. 1, 769–799.

  49. Ringwood, A. E. and Green, D. H.: 1973, ‘Petrogenesis of Lunar Basalts’, ms in prep.

  50. Ringwood, A. E. and Major, A.: 1970,Phys. Earth Planetary Interiors 3, 89–108.

  51. Ringwood, A. E. and Oversby, V.: 1972, ms in preparation.

  52. Runcorn, S. K.: 1972,1972 Lunar Science Confernce Abstracts, Houston, Texas, pp. 590–592.

  53. Sato, M. and Helz, R. T.: 1971,Apollo 12 Lunar Science Confernce, Houston, Texas.

  54. Schnetzler, C. C. and Philpotts, J. A.: 1971,Proc. Second Lunar Science Conference 2, 1101–1122, MIT Press. 1971.

  55. Schober, M.: 1971,Z. Geophys,37, 283–292.

  56. Shankland, T. J.: 1969, in S. K. Runcorn (ed.),The Application of Modern Physics to the Earth and Planetary interiors Wiley Interscience, New York, pp. 175–190.

  57. Sill, W. R.: 1972,The Moon 4, 3–17.

  58. Sonett, C. P., Colburn, D. S., Dyal, P., Parkin, C. W., Smith, B. F., Schubert, G., and Schwartz, K.: 1971,Nature 230, 359–362.

  59. Stacey, F. D.: 1969,Physics of the Earth, John Wiley and Sons, New York.

  60. Taylor, S. R., Rudowski, R., Muir, P., Graham, A., and Kay, M.: 1971,Proc. Second Lunar Science Conference 2, 1083–1099, MIT Press.

  61. Toksőz, M. N., Solomon, S. C., Minear, J. W., and Johnston, D. H.: 1972,The Moon 4, 190–213.

  62. Turcotte, D. L. and Oxburgh, E. R.: 1969,Nature 223, 250.

  63. Turner, G.: 1971,1971 Lunar Science Conference Abstracts, Houston, Texas, p. 63.

  64. Wasserburg, G. J., Turner, G., Tera, F., Podesek, F. A., Papanastassiou, D. A., and Huneke, J. C.: 1972,1972 Lunar Science Conference Abstracts, Houston, Texas, pp. 695–697.

  65. Weill, D. F., McCallum, I. S., Bottinga, Y., Drake, M. J., and McKay, G. A.: 1970,Geochim. Cosmochim. Acta Supp. 1, 937–955.

  66. Williams, R. J.: 1971,Amer. J. Sci. 270, 334–360.

  67. Williams, R. J.: 1972,Earth Planetary Sci. Letters 15, 296–300.

  68. Wood, J. A.: 1970,J. Geophys. Res. 75, 6497–6513.

  69. Wood, J. A.: 1972, ‘The Nature of the Lunar Crust and Composition of Undifferentiated Lunar Material’, preprint.

  70. Wood, J. A., Dickey, J. S., Jr., Marvin, U. B., and Powell, B. N.: 1971,Proc. Apollo 11 Lunar Science Conference, Vol.1, 965–988, MIT Press.

Download references

Author information

Additional information

Paper dedicated to Professor Harold C. Urey on the occasion of his 80th birthday on 29 April 1973.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Duba, A., Ringwood, A.E. Electrical conductivity, internal temperatures and thermal evolution of the moon. The Moon 7, 356–376 (1973).

Download citation


  • Electrical Conductivity
  • Olivine
  • Remanent Magnetization
  • Oxygen Fugacity
  • Surface Rock