Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Transformation ofBrassica oleracea L.: a critical review


Brassica oleracea is a highly polymorphic species encompassing a wide range of important vegetable and fodder crops. Gene transfer into cultivated forms of this species requires reproducible and efficient methods for genetic transformation and plant regeneration. In this review, we have collated the research experience on transformation ofB. oleracea to highlight the problems encountered. Most research effort has been directed at developingAgrobacterium-mediated transformation methods with relatively little emphasis to date on direct gene transfer techniques. Common procedures for the transformation ofB. oleracea have not emerged, due to the inherent variability between and amongst genotypes. Future progress would be facilitated by the use of genetically fixed material, such as double-haploid or inbred lines, to reduce variation of response within genotypes and would avoid the need for cultivar-specific transformation protocols if responsive lines amenable to crossing with cultivated forms could be identified. The principal difficulties relate to combining efficient plant regeneration with gene transfer. Methods that enhance bacterial virulence and increase the proportion of cells susceptible to transformation and competent for regeneration are discussed. Inefficient selection is a major cause of poor transformation frequencies inB. oleracea and has resulted in the regeneration of chimeric plants uponAgrobacterium tumefaciens-mediated transformation. Promising results have been obtained withAgrobacterium rhizogenes-mediated transformation but the impact of therol genes on flowering of primary transformants has not yet been fully assessed. Strategies to reduce the deleterious effects of therol genes on flowering are discussed. Few agronomically useful characters have been introduced, the majority of research having been confined to the introduction of marker and reporter genes; possible candidate genes are discussed.

This is a preview of subscription content, log in to check access.


  1. 1.

    Alstad DN, Andow DA: Managing the evolution of insect resistance to transgenic plants. Science 268: 1894–1896 (1995).

  2. 2.

    Alt-Mörbe J, Nedderman P, VonLintig J, Weiler EW, Schroder J: Temperature-sensitive step in Ti-plasmid vir-region induction and correlation with cytokinin secretion byAgrobacteria. Mol Gen Genet 213: 1–8 (1989).

  3. 3.

    Assaad FF, Tucker KL, Singer ER: Epigenetic repeat-induced gene silencing (RIGS) inArabidopsis. Plant Mol Biol 22: 1067–1085 (1993).

  4. 4.

    Baulcombe D: Novel strategies for engineering virus resistance in plants. Curr Opin Biotechnol 5: 117–124 (1994).

  5. 5.

    Béclin C, Chalot F, Botton E, Jouanin L, Dore C: Potential use of theaux2 gene fromAgrobacterium rhizogenes as a conditional negative marker in transgenic cabbage. Transgen Res 2: 48–55 (1993).

  6. 6.

    Berthomieu P, Jouanin L: Transformation of rapid cycling cabbage (Brassica oleracea var.capitata) withAgrobacterium rhizogenes. Plant Cell Rep 11: 334–338 (1992).

  7. 7.

    Berthomieu P, Béclin C, Charlot F, Doré C, Jouanin L: Routine transformation of rapid cycling cabbage (Brassica oleracea)-molecular evidence for regeneration of chimeras. Plant Sci 96: 223–235 (1994).

  8. 8.

    Brasileiro AMC, Leplé J-C, Muzzin J, Ounnoughi D, Michel M-F, Jouanin L; An alternative approach for gene transfer in trees using wild-typeAgrobacterium strains. Plant Mol Biol 17: 441–452 (1991).

  9. 9.

    Cardarelli M, Mariotti D, Pomponi M, Span〈ograve〉 L, Capone I, Costantino P:Agrobacterium rhizogenes T-DNA genes capable of inducing hairy root phenotype. Mol Gen Genet 209: 475–480 (1987).

  10. 10.

    Capone I, Span〈ograve〉 L, Cardarelli M, Bellincampi D, Petit A, Costantino P: Induction and growth properties of carrot roots with different complements ofAgrobacterium rhizogenes T-DNA. Plant Mol Biol 13: 43–52 (1989).

  11. 11.

    Christey MC, Sinclair BK: Regeneration of transgenic kale (Brassica oleracea var.acephala) rape (B. napus) and turnip (B. campestris var.rapifera) plants viaAgrobacterium rhizogenes mediated transformation. Plant Sci 87: 161–169 (1992).

  12. 12.

    Christey MC, Sinclair BK: Field-testing of Kapeti kale regenerated fromAgrobacterium-induced hairy roots. NZ J Agric Res 36: 389–392 (1993).

  13. 13.

    Chyi YS, Jorgenson RA, Goldstein D, Tanksley SD, Loaiza-Figueroa F. Locations and stability ofAgrobacterium-mediated T-DNA insertions in theLycopersicon genome. Mol Gen Genet 204: 64–69 (1986).

  14. 14.

    Colby SM, Juncosa AM, Meredith CP: Cellular Differences inAgrobacterium susceptibility and regenerative capacity restrict the development of transgenic grapevines. J Am Soc Hort Sci 116: 356–361 (1991).

  15. 15.

    David C, Tempé J: Genetic transformation of cauliflower (Brassica oleracea L. var.botrytis) byAgrobacterium rhizogenes. Plant Cell Rep 7: 88–91 (1988).

  16. 16.

    DeBlock M, DeBrouwer D, Tenning P: Transformation ofBrassica napus andBrassica oleracea usingAgrobacterium tumefaciens and the expression ofbar andneo genes in transgenic plants. Plant Physiol 91: 694–701 (1989).

  17. 17.

    DeLuca M, McElroy WD: Purification and properties of firefly luciferase. Meth Enzymol 57: 3–15 (1978).

  18. 18.

    Delzer BW, Somers DA, Orf JH:Agrobacterium tumefaciens susceptibility and plant regeneration of 10 soybean genotypes in maturity groups 00 to II. Crop Sci 30: 320–322 (1990).

  19. 19.

    Delores SC, Gardner RC: Analysis of T-DNA structure in a large number of transgenic petunias generated byAgrobacterium-mediated transformation. Plant Mol Biol 11: 365–377 (1988).

  20. 20.

    Dietert MF, Barron SA, Toder OC: Effects of genotypes onin vitro culture in the genusBrassica. Plant Sci Lett 26: 233–240 (1982).

  21. 21.

    Ellis PR, Cole R: Sources of resistance to cabbage aphid in brassicas. Annual Report for Horticulture Research International 1993–94, pp. 29–30 (1994).

  22. 22.

    Eimert K, Schröder C, Siegemund F: Expression of the NPTII-sequence in cauliflower after injection ofAgrobacterium into seeds. J Plant Physiol 140: 37–40 (1992).

  23. 23.

    Eimert K, Siegemund F: Transformation of cauliflower (Brassica oleracea L. var.botrytis) — an experimental survey. Plant Mol Biol 19: 485–490 (1992).

  24. 24.

    Feldmann KA, Marks MD, Christianson ML, Quatrano RS: A dwarf mutant ofArabidopsis generated by T-DNA insertion mutagenesis. Science 243: 1351–1354 (1989).

  25. 25.

    Finnegan J, McElroy D: Transgene inactivation: plants fight back! Bio/technology 12: 883–888 (1994)

  26. 26.

    Flavell RB: Inactivation of gene expression in plants as a consequence of specific sequence duplication. Proc Natl Acad Sci USA 91: 3490–3496 (1994).

  27. 27.

    Fry J, Barnason A, Horsch RB: Transformation ofBrassica napus withAgrobacterium tumefaciens based vectors. Plant Cell Rep 6: 321–325 (1987).

  28. 28.

    Goodwin I, Todd G, Ford-Lloyd B, Newbury HJ: The effects of acetosyringone and pH onAgrobacterium-mediated transformation vary according to plant species. Plant Cell Rep 9: 671–675 (1991).

  29. 29.

    Grevelding C, Fanates V, Kemper E, Schell J, Masterson R: Single-copy T-DNA insertions inArabidopsis are the predominant form of integration in root-derived transgenics, whereas multiple insertions are found in leaf discs. Plant Mol Biol 23: 847–860 (1993).

  30. 30.

    Hamada M, Hosoki T, Kusabiraki Y, Kigo T: Hairy root formation and plantlet regeneration from Brussels sprouts (Brassica oleracea var.gemmifera Zenk.) mediated byAgrobacterium rhizogenes. Plant Tissue Culture Lett 6: 130–133 (1989).

  31. 31.

    Hamilton AJ, Lycett GW, Grierson D: Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants. Nature 346: 437–439 (1990).

  32. 32.

    Hamill JD, Rounsley S, Spencer A, Todd G, Rhodes MJC: The use of the polymerase chain reaction in plant transformation studies. Plant Cell Rep 10: 221–224 (1991).

  33. 33.

    Heiser W: Optimization of Biolistic® transformation using the helium-driven PDS-1000/He system. BioRad US/EG Bulletin 1688 (1995).

  34. 34.

    Hobbs SLA, Kpodar P DeLong CMO: The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants. Plant Mol Biol 15: 851–864 (1990).

  35. 35.

    Hobbs SLA, Warkentin TD, DeLong CMO: Transgene copy number can be positively or negatively associated with transgene expression. Plant Mol Biol 21: 17–26 (1993).

  36. 36.

    Hodgkin T: Cabbages, kales etc.Brassica oleracea (Cruciferae). In: Smartt J, Simmonds NW (eds) Evolution of Crop Plants, pp. 76–82. Longman (1995).

  37. 37.

    Hoekema A, Hirsch PR, Hooykaass PJJ, Schilperoort RA: A binary vector strategy based on separation ofvir- and T-region ofAgrobacterium tumefaciens Ti-plasmid. Nature 303: 179–180 (1983).

  38. 38.

    Holford P, Hernandez N, Newbury HJ: Factors influencing the efficiency of T-DNA transfer during co-cultivation ofAntirrhinum majus withAgrobacterium tumefaciens. Plant Cell Rep 11: 196–199 (1992).

  39. 39.

    Holbrook LA, Miki BL:Brassica grown gall tumorigenesis and in vitro of transformed tissue. Plant Cell Rep 4: 329–332 (1985).

  40. 40.

    Horsch RB, Fry JE, Hoffmann NL, Eichholz D, Rogers SG, Fraley RT: A simple and general method for transferring genes into plants. Science 227: 1229–1231 (1984).

  41. 41.

    Hosoki T, Shiraishi K, Kigo T, Ando M: Transformation and regeneration of ornamental kale (Brassica oleracea var.acephala DC) mediated byAgrobacterium rhizogenes. Scient Hort 40: 259–266 (1989).

  42. 42.

    Hosoki T, Kigo T, Shiraishi K: Transformation and regeneration of broccoli (Brassica oleracea var.italica) mediated byAgrobacterium rhizogenes. J Japan Soc Hort Sci 60: 71–75 (1991).

  43. 43.

    Hosoki T, Kanbe H, Kigo T: Transformation of ornamental tobacco and kale mediated byAgrobacterium tumefaciens andA. rhizogenes harbouring a reporter β-glucuronidase gene. J Japan Soc Hort Sci 63: 167–172 (1994).

  44. 44.

    Hosoki T, Kigo T: Transformation of Brussels sprouts (Brassica oleracea var.gemmifera Zenk.) byAgrobacterium rhizogenes harbouring a reporter β-glucuronidase gene. J Japan Soc Hort Sci 63: 589–592 (1994).

  45. 45.

    Jin S, Komari T, Gordon MP, Nester EW: Genes responsible for the supervirulence phenotype ofAgrobacterium tumefaciens A281. J Bact 169: 4417–4425 (1987).

  46. 46.

    Jones JDG, Gilbert DE, Grady KL, Jorgensen RA: T-DNA structure and gene expression in petunia plants transformed byAgrobacterium tumefaciens C58 derivatives. Mol Gen Genet 207: 478–485 (1987).

  47. 47.

    Jordan MC, McHughen A: Transformed callus does not necessarily regenerate transformed shoots. Plant Cell Rep 7: 285:287 (1988).

  48. 48.

    Jorgensen R, Synder C, Jones JDG: T-DNA is organized predominantly in inverted repeat structures in plants transformed withAgrobacterium tumefaciens C58 derivatives. Mol Gen Genet 207: 471–477 (1987).

  49. 49.

    Jouanin L: Restriction map of agropine-type Ri plasmid and its homologies with Ti plasmids. Plasmid 12: 91–102 (1984).

  50. 50.

    Kempin SA, Savidge B, Yanofsky MF: Molecular basis of the cauliflower phenotype inArabidopsis. Science 267: 522–525 (1995).

  51. 51.

    King GJ: Molecular genetics and breeding of vegetable brassicas. Euphytica 50: 97–112 (1990).

  52. 52.

    Lazzeri PA, Dunwell JM:In vitro shoot regeneration from seedling root segments ofBrassica oleracea andBrassica napus cultivars. Ann Bot 54: 341–350 (1984).

  53. 53.

    Lazzeri PA, Dunwell JM: Establishment of isolated root cultures ofBrassica species and regeneration from cultured-root segements ofBrassica oleracea var.italica. Ann Bot 54: 351–361 (1984).

  54. 54.

    Lin J-J, Assad-Garcia N, Kuo J: Effects ofAgrobacterium cell concentration on the transformation efficiency of tobacco andArabidopsis thaliana. Focus 16(3): 70–73 (1994).

  55. 55.

    Linn F, Heidmann I, Saedler H, Meyer P: Epigenetic changes in the expression of the maizeAI gene in Petunia hybrida: role of numbers of integrated gene copies and state of methylation. Mol Gen Genet 222: 329–336 (1990).

  56. 56.

    Matzke MA, Matzke AJM: Differential inactivation and methylation of a transgene in plants by two suppressor loci containing homologous sequences. Plant Mol Biol 16: 821–830 (1991).

  57. 57.

    Matzke MA, Neuhuber F, Matzke AJM: A variety of epistatic interactions can occur between partially homologous transgene loci brought together by sexual crossing. Mol Gen Genet 236: 379–389 (1993).

  58. 58.

    Matzke AJM, Neuhuber F, Park YD, Ambros PF, Matzke MA: Homology-dependent gene silencing in transgenic plants: epistatic silencing loci contain multiple copies of methylated transgenes. Mol Gen Genet 244: 219–229.

  59. 59.

    McBride KE, Svab Z, Schaaf DJ, Hogan PS, Stalker DM, Maliga P: Amplification of a chimericBacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Bio/technology 13: 362–365 (1995).

  60. 60.

    McCormick S, Niedermeyer J, Fry J, Barnason A, Horsch R, Fraley R: Leaf disc transformation of cultivated tomato (L. esculentum) usingAgrobacterium tumefaciens. Plant Cell Rep 5(2): 81–84 (1986).

  61. 61.

    McHughen A, Jordan M, Feist G: A preculture period prior toAgrobacterium inoculation increases production of transgenic plants. J Plant Physiol 135: 245–248 (1989).

  62. 62.

    Metz TD, Dixit R, Earle ED:Agrobacterium tumefaciens-mediated transformation of broccoli (Brassica oleracea var.italica) and cabbage (B. oleracea var.capitata). Plant Cell Rep 15: 287–292 (1995).

  63. 63.

    Metz TD, Roush RT, Tang JD, Shelton AM, Earle ED: Transgenic broccoli expressing a Bacillus thuringiensis insecticidal crystal protein: implications for pest resistance management strategies. Mol Breed 1: 309–317 (1995).

  64. 64.

    Meyer P, Heidmann I, Forkmann G, Saedler H: A new petunia flower colour generated by transformation of a mutant with a maize gene. Nature 330: 677–678 (1987).

  65. 65.

    Meyer P, Linn F, Heidmann I, Meyer HZA, Niedenhof I, Saedler H: Endogenous and environmental factors influence 35S promoter methylation of a maizeAI gene construct in transgenic petunia and its colour phenotype. Mol Gen Genet 231(3): 345–352 (1992).

  66. 66.

    Meyer P, Heidmann I, Niedenhorf I: Differences in DNA-methylation are associated with a paramutation phenomenon in transgenic petunia. Plant J 4: 89–100 (1993).

  67. 67.

    Meyer P, Heidmann I: Epigenetic variants of a transgenic petunia line show hypermethylation in transgene DNA: an indication for specific recognition of foreign DNA in transgenic plants. Mol Gen Genet 243: 390–399 (1994).

  68. 68.

    Meyer P: Understanding and controlling transgene expression. Trends Biotechnol 13: 332–337 (1995).

  69. 69.

    Mukhopadhyay A, Töpfer R, Pradhan AK, Sodhi YS, Steinbiß H-H, Schell J, Pental D: Efficient regeneration ofBrassica oleracea hypocotyl protoplasts and high frequency genetic transformation by direct DNA uptake. Plant Cell Rep 10: 375–379 (1991).

  70. 70.

    Mukhopadhyay A, Arumugam N, Nandakumar PBA, Pradhan AK, Gupta V, Pental D: Agrobacterium-mediated genetic transformation of oilseedBrassica campestris: transformation frequency is strongly influenced by the mode of shoot regeneration. Plant Cell Rep 11: 506–513 (1992).

  71. 71.

    Murata M, Orton TJ: Callus initiation and regeneration capacities inBrassica species, Plant Cell Tiss Organ Cult 11: 111–123 (1987).

  72. 72.

    Napoli C, Lemieux C, Jorgensen R: Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes intrans. Plant Cell 2: 279–289 (1990).

  73. 73.

    Narasimhulu SB, Prakash S, Chopra VL: Comparative shoot regeneration in diploid and amphidiploidBrassica species and their interspecific hybrids. Can J Bot 70: 1513–1514 (1992).

  74. 74.

    Neuhuber F, Park YD, Matzke AJM, Matzke MA: Susceptibility of transgene loci to homology-dependent gene silencing. Mol Gen Genet 244: 230–241 (1994).

  75. 75.

    Niedz RP, Sussman MR, Satterlee JS: Green fluorescent protein: anin vitro reporter of plant gene expression. Plant Cell Rep 14: 403–406 (1995).

  76. 76.

    Ockendon DJ: The ploidy of plants obtained from anther culture of cauliflowers (Brassica oleracea var.botrytis) Ann Appl Biol 113: 319–325 (1988).

  77. 77.

    Oeller PW, Wong LM, Taylor LP, Pike DA, Theologis A: Reversible inhibition of tomato fruit senescence by antisense RNA. Science 254: 437–439 (1991).

  78. 78.

    Ohlsson M, Eriksson T: Transformation ofBrassica campestris protoplasts withAgrobacterium tumefaciens. Hereditas 108: 173–177 (1988).

  79. 79.

    Oono Y, Handa T, Kanaya K, Uchimiya H: The TL-DNA gene of Ri plasmids responsible for dwarfness of tobacco plants. Jpn J Genet 62: 501–505 (1987).

  80. 80.

    Passelègue E, Kerlan C: Transformation of cauliflower (Brassica oleracea var.botrytis) by transfer of cauliflower mosaic virus gene through cocultivation with virulent and avirulent strains ofAgrobacterium. Plant Sci 113: 79–89 (1996).

  81. 81.

    Peach C, Velten J: Transgene expression variability (position effect) of CAT and GUS reporter genes driven by linked divergent T-DNA promoters. Plant Mol Biol 17: 49–60 (1991).

  82. 82.

    Petit A, David C, Dahl GA, Ellis JG, Guyon P, Casse-Delbart F, Tempé J: Further extension of the opine concept: plasmids inAgrobacterium rhizogenes cooperate for opine degradation. Mol Gen Genet 190: 204–214 (1983).

  83. 83.

    Pierpoint WS: Targets for the introduction of pest and disease resistance into crops by genetic engineering. IACR integrated Approach to Crop Research. IACR — Long Ashton Research Station, April 1995.

  84. 84.

    Pogson BJ, Downs CG, Davies KM: Differential expression of two 1-aminocyclopropane-1-carboxylic acid oxidase genes in broccoli after harvest. Plant Physiol 108: 651–657 (1995).

  85. 85.

    Pogson BJ, Downs CG, Davies KM, Morris SC: Nucleotide sequence of a cDNA clone encoding 1-aminocyclopropane-1-carboxylic acid synthase from broccoli. Plant Physiol 108: 857–858 (1995).

  86. 86.

    Pua EC, Mehra-Palta A, Nagy F, Chua NH: Transgenic plants ofBrassica napus L. Bio/technology 5: 815–817 (1987).

  87. 87.

    Radke SE, Turner JC, Facciotti D: Transformation and regeneration ofBrassica rapa usingAgrobacterium tumefaciens. Plant Cell Rep 11: 499–505 (1992).

  88. 88.

    Reynolds JF: Regeneration in vegetable species. In: Vasil IK (ed) Cell Culture and Somatic Cell Genetics of Plants, vol. 3. Plant Regeneration and Genetic Variability, pp. 151–178. Academic Press, London (1986).

  89. 89.

    Sangwan RS, Bourgeois Y, Brown S, Vasseur G, Sangwan-Norreel B: Characterization of competent cells and early events ofAgrobacterium-mediated genetic transformation inArabidopsis thaliana. Planta 188: 439–456 (1992).

  90. 90.

    Schmülling T, Röhrig H, Pilz S, Walden R, Schell J: Restoration of fertility by antisense RNA in genetically engineered male sterile tobacco plants. Mol Gen Genet 237: 385–394 (1993).

  91. 91.

    Schmülling T, Schell J: Transgenic tobacco plants regenerated from leaf disks can be periclinal chimeras. Plant Mol Biol 21: 705–708 (1993).

  92. 92.

    Schmülling T, Schell J, Spena A: Single genes fromAgrobacterium rhizogenes influence plant development. EMBO J 7: 2621–2629 (1988).

  93. 93.

    Scorza R, Zimmerman TW, Cordts JM, Footen KJ: Horticultural characteristics of transgenic tobacco expressing therolC gene fromAgrobacterium rhizogenes. J Am Soc Hort Sci 119: 1091–1098 (1994).

  94. 94.

    Sheikholeslam SN, Weeks DP: Acetosyringone promotes high efficiency transformation ofArabidopsis thaliana explants byAgrobacterium tumefaciens. Plant Mol Biol 8: 291–298 (1987).

  95. 95.

    Slocum MK, Figdore SS, Kennard WC, Suzuki J, Osborn TC: Linkage arrangement of restriction fragment length polymorphism loci inBrassica oleracea. Theor Appl Genet 80: 57–64 (1990).

  96. 96.

    Smyth DR: Origin of the cauliflower. Curr Biol 5: 361–363 (1995).

  97. 97.

    Song KM, Osborn TC, Williams PH:Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RLFPs) 1. Genome evolution of diploid and amphidiploid species. Theor Appl Genet 75: 784–794 (1988).

  98. 98.

    Spena A, Schmülling T, Koncz C, Schell JS: Independent and synergistic activity ofrolA, B abd C loci in stimulating abnormal growth in plants. EMBO J 6: 3891–3899 (1987).

  99. 99.

    Spena A, Aalen RB, Schulze SC: Cell-autonomous behaviour of therolC gene ofAgrobacterium rhizogenes during leaf development a visual assay for transposson excision in transgenic plants. Plant Cell 1: 1157–1164 (1989).

  100. 100.

    Srivastava V, Reddy AS, Guha-Mukhejee S: Transformation and regeneration ofBrassica oleracea mediated by an oncogenicAgrobacterium tumefaciens. Plant Cell Rep 7: 504–507 (1988).

  101. 101.

    Spielmann A, Simpson RB: T-DNA structure in transgenic tobacco plants with multiple integration sites. Mol Gen Genet 205: 34–41 (1986).

  102. 102.

    Stachel SE, Nester EW, Zambryski PC: A plant cell factor inducesAgrobacterium tumefaciens vir gene expression. Proc Natl Acad Sci USA 83: 379–383 (1986).

  103. 103.

    Tempé J, Casse-Delbart F: Plant gene vectors and genetic transformation:Agrobacterium Ri Plasmids. In: Vasil IK (ed) Cell Culture and Somatic Cell Genetics of Plants, vol. 6, pp. 25–49. Academic Press, London, (1987).

  104. 104.

    Tepfer D: Genetic transformation usingAgrobacterium rhizogenes. Physiol Planta 79: 140–146 (1990).

  105. 105.

    Thomzik JE: Transformation in oilseed rape (Brassica napus L.). In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry, vol. 23. Plant Protoplasts and Genetic Engineering IV, pp. 170–182. Springer-Verlag, Berlin, Heidelberg (1993).

  106. 106.

    Toriyama K, Stein JC, Nasrallah ME, Nasrallah JB: Transformation ofBrassica oleracea with anS-locus gene fromB. campestris changes the self-incompatibility phenotype. Theor Appl Genet 81: 769–776 (1991).

  107. 107.

    Trail F, Richards C, Wu F-S: Genetic manipulation inBrassica. In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry, vol. 9, Plant Protoplasts and Genetic Engineering II, pp. 197–215. Springer-Verlag, Berlin, Heidelberg (1989).

  108. 108.

    vanBlokland R, van derGeest N, Mol JNM, Kooter JM: Transgene-mediated suppression of chalcone synthase expression inPetunia hybrida results from an increase in RNA turnover. Plant J 6: 861–877 (1994).

  109. 109.

    van derKrol AR, Mur LA, Beld M, Mol JNM, Stuitje AR: Flavonoid genes in petunia: addition of a limited number of gene copies may lead to suppression of gene expression. Plant Cell 2: 291–199 (1990).

  110. 110.

    vanWordragen MF, Dons HJM:Agrobacterium tumefaciens-mediated transformation of recalcitrant crops. Plant Mol Biol Rep 10: 12–36 (1992).

  111. 111.

    Vaucheret H: Identification of a general silencer for 19S and 35S promoters in a transgenic tobacco plant. 90bp of homology in the promoter sequence are sufficient for transinactivation CR Acad Sci Paris, Sciences de la vie/Life Sciences 316: 1471–1483 (1993).

  112. 112.

    Verma SC, Rees H: Nuclear DNA and the evolution of allotet-raploid Brassicae. Heredity 33: 61–68 (1974).

  113. 113.

    White FF, Taylor BH, Huffman GA, Gordon MP, Nester EW: Molecular genetic analysis of the transfered DNA regions of the root-inducing plasmid ofAgrobacterium rhizogenes. J Bact 164: 33–44 (1985).

  114. 114.

    Wijbrandi J, deBoth MTJ: Temperate vegetable crops. Sci Hortic 55: 37–63 (1993).

  115. 115.

    Williams J, Pink DAC, Biddington NL: Effect of silver nitrate on long term culture and regeneration of callus fromBrassica oleracea var.gemmifera. Plant Cell Tissue Organ Cult 21: 61–66 (1990).

  116. 116.

    Zambryski PC: Chronicles from theAgrobacterium-plant cell DNA transfer story. Annu Rev Plant Physiol Plant Mol Biol 43: 465–490 (1992).

  117. 117.

    Zambryski P, Joos H, Genetello C, Leemans M, VanMontagu M, Schell J: Ti Plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J 2: 2143–2150 (1983).

  118. 118.

    Zambryski P, Tempe J, Schell J: Transfer and function of T-DNA genes fromAgrobacterium Ti and Ri plasmids in plants. Cell 56: 193–201 (1989).

  119. 119.

    Zee SY, Johnson BB: Cole crops. In: Ammirato PV, Evans DA, Sharp WR, Yamada Y (eds) Handbook of Plant Cell Culture, vol. 3, pp. 227–246. Macmillan, New York (1984).

  120. 120.

    Zhu Q, Maher EA, Masoud S: Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco. Bio/technology 12: 807–812 (1994).

Download references

Author information

Correspondence to I. J. Puddephat.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Puddephat, I.J., Riggs, T.J. & Fenning, T.M. Transformation ofBrassica oleracea L.: a critical review. Mol Breeding 2, 185–210 (1996). https://doi.org/10.1007/BF00564197

Download citation

Key words

  • Brassica oleracea
  • Agrobacterium
  • transformation
  • direct gene transfer
  • regeneration
  • virulence
  • flowering
  • rol genes
  • transgene expression
  • transgene inactivation