Optical and Quantum Electronics

, Volume 27, Issue 5, pp 511–518 | Cite as

OEIC technologies for high-speed optical interconnection system

  • Sung-June Kim
  • Dae-Keun Kim
  • Dong-Won Shin
  • Chang-Oh Jeong
Optical Interconnects


As the level of integration and the power of computation increase, methods of interconnecting computational elements attract more attention and the total system performance is bottlenecked by the problems associated with electrical interconnections. Optical interconnections have advantages of practically unlimited bandwidth and absence of crosstalk. To utilize such merits of optical interconnections, a large number of low-cost high-performance optoelectronic integrated circuits (OEICs) are needed. This paper focuses on monolithically integrated receiver OEICs that consist of InP/InGaAs p-i-n photodiodes and fully ion-implanted InP junction field-effect transistors (JFETs). In the formation of shallow InP p-n junctions we use a co-implantation technique in which we implant a group V element together with Be, a dopant, and take advantage of damage and stoichiometry effects. We fabricate a p-i-n/JFET amplifier receiver front-end circuit and a receiver 2×2 crosspoint switch circuit using this technique. We also develop bandwidth enhancement designs using inductive peaking and cascoding. Finally, we demonstrate a single-channel, free-space optical interconnection system with a bandwidth of 1.5 GHz and an interconnection length of 50 cm.


Switch Circuit Computational Element Optical Interconnection Group Versus Element Electrical Interconnection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N.Weste andK.Eshraghian,Principles of CMOS VLSI Design (Addison-Wesley, Reading, Mass., 1988).Google Scholar
  2. 2.
    J. Cheng, S. Forrest, R. Stall, C. Cheng, E. Chan, P. Schmidt, G. Guth andR. Wunder,Proceedings of the Optical Fiber Communications Conference, San Diego, Feb. 1985.Google Scholar
  3. 3.
    D.Wake, A.Nelson, S.Cole, S.Wong, I.Henning andE.Scott,IEEE Electron. Device Lett. 6 (1985) 626.Google Scholar
  4. 4.
    J. Boos, T. Weng, S. Binari, G. Kelner andR. Henry,IEDM Tech. Dig. (1983) 625.Google Scholar
  5. 5.
    S.Kim, K.Wang, G.Vella-coleiro, J.Lutze, Y.Ota andG.Guth,IEEE Electron. Device Lett. 8 (1987) 518.Google Scholar
  6. 6.
    C.Jeong, S.Kim andB.Choe,J. Electron. Mater. 21 (1992) 825.Google Scholar
  7. 7.
    S.Kim, G.Guth, G.Vella-coleiro, C.Seabury, W.Sponsler andB.Rhoades,IEEE Electron. Device Lett. 9 (1988) 447.Google Scholar
  8. 8.
    S.Kim andJ.Geary,KITE J. Electron. Eng. 3 (1992) 36.Google Scholar
  9. 9.
    C. W.Seabury, R.Bylsma, G.Vella-coleiro, S.Kim, P.Davisson, C.Yee, J.Eng, D.Deblis, J.Jeong andY.Jhee,IEEE Photon. Technol. Lett. 3 (1991) 164.Google Scholar
  10. 10.
    N.Ohkawa,IEEE J. Lightwave Technol. 6 (1988) 1665.Google Scholar
  11. 11.
    D.Shin andS.Kim,Proceedings of KICS Fall Conference 11 (1992) 317.Google Scholar
  12. 12.
    D. Z.Tsang,Appl. Opt. 29 (1990) 2034.Google Scholar
  13. 13.
    R.Kim, E.Chen andF.Lin,IEEE J. Lightwave Technol. 9 (1991) 1650.Google Scholar
  14. 14.
    T.Sakano, T.Matsumoto, K.Noguchi andJ.Sawabe,Appl. Opt. 30 (1991) 2334.Google Scholar
  15. 15.
    D. Lewis, P. Anthony, M. Bendett andJ. Crow,LEOS Proceedings (1992) 430.Google Scholar
  16. 16.
    James W.Parker,IEEE J. Lightwave Technol. 9 (1991) 1764.Google Scholar
  17. 17.
    D.Kim andS.Kim.Proceedings of the Optical Society of Korea 2 (1993) 67.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • Sung-June Kim
    • 1
  • Dae-Keun Kim
    • 1
  • Dong-Won Shin
    • 1
  • Chang-Oh Jeong
    • 1
  1. 1.Department of Electronics EngineeringSeoul National UniversitySeoulKorea

Personalised recommendations