Advertisement

Order

, Volume 6, Issue 3, pp 235–240 | Cite as

Sphere orders

  • Graham Brightwell
  • Peter Winkler
Article

Abstract

Ann-sphere order is a finite partially ordered set representable by containment ofn-spheres in Euclidean (n+1)-space. We present a sequence {P i } of ordered sets such that eachP i is ann-sphere order only forn≥i; one consequence is that we are able to determine the dimension of a Euclidean space-time manifold from the finite suborders of its causality order.

AMS subject classifications (1980)

06A10 52A37 

Key words

Order sphere partially ordered set space-time 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N.Alon and E. R.Scheinerman (1988) Degrees of freedom versus dimension,Order 5, 11–16.Google Scholar
  2. 2.
    L.Bombelli, J.Lee, D.Meyer, and R. D.Sorkin (1987) Space-time as a causal set,Phys. Rev. Lett. 59, 521.Google Scholar
  3. 3.
    L.Danzer, G.Grunbaum, and V.Klee (1983) Helly's Theorem and its relatives,Proc. Symp. Pure Math. 7, Amer. Math. Soc., 101–180.Google Scholar
  4. 4.
    B.Dushnik and E. W.Miller (1941) Partially ordered sets,Amer. J. Math 63, 600–610.Google Scholar
  5. 5.
    P. C.Fishburn (1988) Interval orders and circle orders,Order 5, 225–234.Google Scholar
  6. 6.
    G. H.Hurlbert (1988) A short proof that N3 is not a circle containment order,Order 5, 235–237.Google Scholar
  7. 7.
    D. Meyer (1989) Spherical containment and the Minkowski dimension of partial orders, preprint.Google Scholar
  8. 8.
    J.Radon (1921) Mengen Konvexer Kenthalten,Math. Ann. 83, 113–115.Google Scholar
  9. 9.
    E. R. Scheinerman and J. C. Wierman (1987) On circle containment orders, preprint, Johns Hopkins University.Google Scholar
  10. 10.
    J. B.Sidney, S. J.Sidney and J.Urrutia (1988) Circle orders,N-gon orders and the crossing number of partial orders,Order 5, 1–10.Google Scholar
  11. 11.
    W. T. Trotter (1986) Problems and conjectures in the combinatorial theory of ordered sets, preprint, University of South Carolina.Google Scholar
  12. 12.
    J. Urrutia (1987) Partial orders and Euclidean geometry, preprint, University of Ottawa.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Graham Brightwell
    • 1
  • Peter Winkler
    • 2
  1. 1.London School of Economics and Political ScienceLondonUnited Kingdom
  2. 2.BellcoreMorristownU.S.A.

Personalised recommendations