, Volume 6, Issue 3, pp 227–233 | Cite as

Transposition generation of alternating permutations

  • Frank Ruskey


A permutationπ1π2...π n is alternating ifπ1<π2>π3<π4.... Alternating permutations are counted by the Euler numbers. Here we show that alternating permutations can be listed so that successive permutations differ by a transposition, ifn is odd. Extensions and open problems are mentioned.

AMS subject classifications (1980)

05A05 05C45 06A10 

Key words

Combinatorial generation alternating permutation transposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L.Comtet (1974)Advanced Combinatorics. D. Reidel, Dordrecht.Google Scholar
  2. 2.
    S. M.Johnson (1963) Generation of permutations by adjacent transpositions,Math. Comp. 17, 282–285.Google Scholar
  3. 3.
    A. D.Kalvin and Y. L.Varol (1983) On the generation of all topological sortings.J. Algorithms 4, 150–162.Google Scholar
  4. 4.
    D. E.Knuth and T. J.Buckholtz (1967) Computation of tangent, Euler, and Bernoulli numbers,Math. Comp. 21, 663–688.Google Scholar
  5. 5.
    D. E.Knuth and J.Szwarcfiter (1974) A structured program to generate all topological sorting arrangements,Inform. Process. Lett. 2, 153–157.Google Scholar
  6. 6.
    F.Ruskey (1987) Solution of some lattice path parity difference recurrence relations using involutions,Congr. Numer. 59, 257–266.Google Scholar
  7. 7.
    F.Ruskey (1988) Adjacent interchange generation of combinations,J. Algorithms 9, 162–180.Google Scholar
  8. 8.
    F.Ruskey (1988) Research problem 90,Discrete Math. 70, 111–112.Google Scholar
  9. 9.
    R.Sedgewick (1977) Permutation generation methods.Comput. Surveys 9, 137–164.Google Scholar
  10. 10.
    H.Steinhaus (1964)One Hundred Problems in Elementary Mathematics, Basic Books, New York.Google Scholar
  11. 11.
    H. F.Trotter (1962) Algorithm 115: Perm.Comm. ACM 5, 434–435.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Frank Ruskey
    • 1
  1. 1.Department of Computer ScienceUniversity of VicotoriaVictoriaCanada

Personalised recommendations