Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Spectral study of a 1.55 μm multimode FP semiconductor laser using the transmission-line laser model

Abstract

Transmission-line laser modelling is a time-domain technique suitable for simulating large-signal dynamics and complex phenomena in semiconductor lasers. We show that the transmission-line laser model (TLLM) is capable of predicting optical spectra in excellent agreement with the measured spectra of a commercially available 1.55 μm Fabry-Perot (FP) laser, providing that scattering centres are introduced to simulate the effect of discrete scattering in or near the active region. The same model is also able to accurately predict the light-current curve, the pulse-modulation response and the relative-intensity-noise spectra of the laser. Thus, the TLLM can be applied to design and optimize short-haul optical communication systems using these commercial FP lasers.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    K. Petermann, (Kluwer Academic Pulishers, Dordrecht, 1991) [and references therein].

  2. 2.

    G. P. Agrawal andN. K. Dutta, (Van Nostrand Reinhold, New York, 1986) [and references therrein].

  3. 3.

    R. Olshansky andG. Joyce,IEEE J. Lightwave Technol. 10 (1992) 1760.

  4. 4.

    Y. Hakamata, K. Takemoto, T. Nakanishi andJ.-I. Nakano,IEEE Photon Technol. Lett. 5 (1993) 251.

  5. 5.

    R.-C. Hsiel, J. Butterfield andW. Gillie,ACOFT-18 Proceedings, Wollongong, NSW, Australia, 1993, p. 3.

  6. 6.

    P. C. Kemeny, J. Hubregtse andP. Wiskin,ACOFT-18 Proceedings, Wollongong, NSW, Australia, 1993, p. 93.

  7. 7.

    Y. Hakamata, K. Isido andK. Takemoto,Electron. Lett. 26 (1990) 739.

  8. 8.

    G. R. Joyce andR. Olshansky,IEEE Photon Technol. Lett. 4 (1992) 665.

  9. 9.

    K. Hagimoto andK. Aida,IEEE J. Lightwave Technol. 6 (1988) 1678.

  10. 10.

    G. L. Koay, A. J. Lowery, R. S. Tucker, T. Higashi, S. Ogita andH. Soda,OEC'94 Technical Digest, Makuhari Messe, Japan, 1994, p. 410.

  11. 11.

    F. H. Peters andD. T. Cassidy,Appl. Phys. Lett. 57 (1990) 330.

  12. 12.

    F. H. Peters andD. T. Cassidy,J. Opt. Soc. Am. B 8 (1991) 99.

  13. 13.

    J. Manning, R. Olshansky, D. M. Fey andW. Powazinik,Electron. Lett. 21 (1985) 496.

  14. 14.

    P. C. R. Gurney, A. J. Lowery andC. N. Murtonen,ACOFT-18 Proceedings, Wollongong, NSW, Australia, 1993, p. 277.

  15. 15.

    A. J. Lowery,IEE Proc. Pt J 139 (1992) 180 [and references therein].

  16. 16.

    G. L. Koay, A. J. Lowery andR. S. Tucker,ACOFT-18 Proceeding, Wollongong, NSW, Australia, 1993, p. 97.

  17. 17.

    A. J. Lowery,IEEE J. Quantum Electron. 28 (1992) 82.

  18. 18.

    J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar andC. J. Armistead,IEEE J. Quantum Electron. 25 (1989) 1261.

  19. 19.

    M. Ueno, S. Asada andS. Kumashiro,IEEE J. Quantum Electron. 26 (1990) 972.

  20. 20.

    G. P. Agrawal,IEEE J. Quantum Electron. 26 (1990) 1901.

  21. 21.

    B. Tromborg, H. Olesen, X. Pan andS. Saito,IEEE J. Quantum Electron. 23 (1987) 1875.

  22. 22.

    P. Vankwikelberge, G. Morthier andR. Baets,IEEE J. Quantum Electron. 26 (1990) 1728.

  23. 23.

    D. T. Cassidy,Appl. Opt. 22 (1983) 3321.

  24. 24.

    P. J. Probert andJ. E. Carroll,IEE Proc. Pt J 136 (1989) 22.

  25. 25.

    L. V. T. Nguyen, A. J. Lowery, P. C. R. Gurney, D. Novak andC. N. Murtonen,Int. J. Numer. Model (1995) in press.

  26. 26.

    F. H. Peters andD. T. Cassidy,Appl. Opt. 28 (1989) 3744.

  27. 27.

    K. Kihara, S. Miura andI. Ushijima,FUJITSU Sci. Technol. J. 26 (1990) 149.

  28. 28.

    K. Kikuchi,Electron. Lett. 24 (1988) 80.

  29. 29.

    R. S. Tucker,IEEE J. Lightwave Technol. 3 (1985) 1180.

  30. 30.

    R. J. Nelson, R. B. Wilson, P. D. Wright, P. A. Barnes andN. K. Dutta,IEEE J. Quantum Electron. 17 (1981) 202.

  31. 31.

    D. Renner andG. Henshall,IEEE J. Quantum Electron. 17 (1981) 199.

  32. 32.

    T. Namegaya, R. Katsumi, N. Iwai, S. Namiki, A. Kasukawa, Y. Hiratani andT. Kikuta,IEEE J. Quantum Electron. 29 (1993) 1924.

  33. 33.

    E. Zielinski, H. Schweizer, K. Streubel, H. Eisele andG. Weimann,J. Appl. Phys. 59 (1986) 2196.

  34. 34.

    H. Ishikawa, M. Yano andM. Takusagawa,Appl. Phys. Lett. 40 (1982) 553.

  35. 35.

    J. F. Lucas, L. F. Dechiaro, C. Salla andC. Y. Boisrobert,Electron. Lett. 28 (1992) 2085.

  36. 36.

    T. Asano andT. Okumura,IEEE J. Quantum Electron. 21 (1985) 619.

  37. 37.

    L. D. Westbrook,IEE Proc. Pt J 133 (1986) 135.

  38. 38.

    E. Wintner andE. P. Ippen,Appl. Phys. Lett. 44 (1984) 999.

  39. 39.

    R. S. Tucker andI. P. Kaminow,IEEE J. Lightwave Technol. 2 (1984) 385.

  40. 40.

    D. J. Channin,J. Appl. Phys. 50 (1979) 3858.

  41. 41.

    Y. C. Chan andA. J. Lowery,Electron. Lett. 30 (1994) 134.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nguyen, L.V.T., Lowery, A.J., Gurney, P.C.R. et al. Spectral study of a 1.55 μm multimode FP semiconductor laser using the transmission-line laser model. Opt Quant Electron 27, 663–678 (1995). https://doi.org/10.1007/BF00563405

Download citation

Keywords

  • Active Region
  • Communication Network
  • Communication System
  • Excellent Agreement
  • Optical Spectrum